Second order monotone finite differences discretization of linear anisotropic differential operators
HTML articles powered by AMS MathViewer
- by J. Frédéric Bonnans, Guillaume Bonnet and Jean-Marie Mirebeau;
- Math. Comp. 90 (2021), 2671-2703
- DOI: https://doi.org/10.1090/mcom/3671
- Published electronically: July 15, 2021
- HTML | PDF | Request permission
Abstract:
We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear and quasi-linear partial differential operators featuring both a first order term and an anisotropic second order term. Our approach requires the domain to be discretized on a Cartesian grid, and takes advantage of techniques from the field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of the compatibility condition required of the first and second order operators, in dimensions two and three. Numerical experiments illustrate the efficiency of our method in several contexts.References
- Jean-David Benamou, Francis Collino, and Jean-Marie Mirebeau, Monotone and consistent discretization of the Monge-Ampère operator, Math. Comp. 85 (2016), no. 302, 2743–2775. MR 3522969, DOI 10.1090/mcom/3080
- J. F. Bonnans, G. Bonnet, and J.-M. Mirebeau, Monotone and second order consistent scheme for the two dimensional Pucci equation, Numerical mathematics and advanced applications ENUMATH 2019, 2021.
- J. F. Bonnans and S. Gaubert, Recherche opérationnelle, Aspects mathématiques et applications, Les Éditions de l’École polytechnique, 2015.
- J. Frédéric Bonnans, Élisabeth Ottenwaelter, and Housnaa Zidani, A fast algorithm for the two dimensional HJB equation of stochastic control, M2AN Math. Model. Numer. Anal. 38 (2004), no. 4, 723–735. MR 2087732, DOI 10.1051/m2an:2004034
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. III. Perfect forms, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 43–80. MR 953277
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VI. Voronoĭ reduction of three-dimensional lattices, Proc. Roy. Soc. London Ser. A 436 (1992), no. 1896, 55–68. MR 1177121, DOI 10.1098/rspa.1992.0004
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Pierre Degond, Alexei Lozinski, Jacek Narski, and Claudia Negulescu, An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition, J. Comput. Phys. 231 (2012), no. 7, 2724–2740. MR 2882095, DOI 10.1016/j.jcp.2011.11.040
- Ronald Devore and Angela Kunoth (eds.), Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin, Heidelberg, 2009.
- Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Inhomogeneous extreme forms, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2227–2255 (2013) (English, with English and French summaries). MR 3060757, DOI 10.5802/aif.2748
- Robert Erdahl, A cone of inhomogeneous second-order polynomials, Discrete Comput. Geom. 8 (1992), no. 4, 387–416. MR 1176378, DOI 10.1007/BF02293055
- Jérôme Fehrenbach and Jean-Marie Mirebeau, Sparse non-negative stencils for anisotropic diffusion, J. Math. Imaging Vision 49 (2014), no. 1, 123–147. MR 3180960, DOI 10.1007/s10851-013-0446-3
- Xiaobing Feng and Max Jensen, Convergent semi-Lagrangian methods for the Monge-Ampère equation on unstructured grids, SIAM J. Numer. Anal. 55 (2017), no. 2, 691–712. MR 3623696, DOI 10.1137/16M1061709
- Brittany D. Froese and Adam M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher, SIAM J. Numer. Anal. 49 (2011), no. 4, 1692–1714. MR 2831067, DOI 10.1137/100803092
- Brittany D. Froese and Adam M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation, SIAM J. Numer. Anal. 51 (2013), no. 1, 423–444. MR 3033017, DOI 10.1137/120875065
- Nicolai V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients, Appl. Math. Optim. 52 (2005), no. 3, 365–399. MR 2174020, DOI 10.1007/s00245-005-0832-3
- Wenbo Li and Ricardo H. Nochetto, Optimal pointwise error estimates for two-scale methods for the Monge-Ampère equation, SIAM J. Numer. Anal. 56 (2018), no. 3, 1915–1941. MR 3819162, DOI 10.1137/18M1165670
- Jean-Marie Mirebeau, Minimal stencils for discretizations of anisotropic PDEs preserving causality or the maximum principle, SIAM J. Numer. Anal. 54 (2016), no. 3, 1582–1611. MR 3504992, DOI 10.1137/16M1064854
- Jean-Marie Mirebeau, Fast-marching methods for curvature penalized shortest paths, J. Math. Imaging Vision 60 (2018), no. 6, 784–815. MR 3812949, DOI 10.1007/s10851-017-0778-5
- Jean-Marie Mirebeau, Riemannian fast-marching on Cartesian grids, using Voronoi’s first reduction of quadratic forms, SIAM J. Numer. Anal. 57 (2019), no. 6, 2608–2655. MR 4029820, DOI 10.1137/17M1127466
- Phong Q. Nguyen and Damien Stehlé, Low-dimensional lattice basis reduction revisited, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 338–357. MR 2137366, DOI 10.1007/978-3-540-24847-7_{2}6
- Adam M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal. 44 (2006), no. 2, 879–895. MR 2218974, DOI 10.1137/S0036142903435235
- Simone Parisotto, Luca Calatroni, Marco Caliari, Carola-Bibiane Schönlieb, and Joachim Weickert, Anisotropic osmosis filtering for shadow removal in images, Inverse Problems 35 (2019), no. 5, 054001, 23. MR 3948575, DOI 10.1088/1361-6420/ab08d2
- A. Schürmann, Computational geometry of positive definite quadratic forms, Univ. Lecture Ser. 49 (2009).
- A. Schürmann, Enumerating perfect forms, Contemp. Math. 493 (2009), 359., DOI 10.1090/conm/493/09679
- Eduard Selling, Ueber die binären und ternären quadratischen Formen, J. Reine Angew. Math. 77 (1874), 143–229 (German). MR 1579602, DOI 10.1515/crll.1874.77.143
- Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Classification of eight-dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 21–32. MR 2300003, DOI 10.1090/S1079-6762-07-00171-0
- G. Voronoi, Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math, 1908.
Bibliographic Information
- J. Frédéric Bonnans
- Affiliation: Inria-Saclay and CMAP, Ecole Polytechnique, Palaiseau, France
- Email: frederic.bonnans@inria.fr
- Guillaume Bonnet
- Affiliation: LMO, Université Paris-Saclay, Orsay, France; and Inria-Saclay and CMAP, Ecole Polytechnique, Palaiseau, France
- Email: guillaume.bonnet1@universite-paris-saclay.fr
- Jean-Marie Mirebeau
- Affiliation: University Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190 Gif-sur-Yvette, France
- MR Author ID: 908991
- ORCID: 0000-0002-7479-0485
- Email: jean-marie.mirebeau@universite-paris-saclay.fr
- Received by editor(s): December 20, 2020
- Received by editor(s) in revised form: March 8, 2021
- Published electronically: July 15, 2021
- Additional Notes: The first author was supported by the Chair Finance & Sustainable Development and of the FiME Lab (Institut Europlace de Finance). This work was partly supported by ANR research grant MAGA, ANR-16-CE40-0014.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2671-2703
- MSC (2020): Primary 65N06, 35J70, 90C49
- DOI: https://doi.org/10.1090/mcom/3671
- MathSciNet review: 4305365