Stability and convergence analysis of artificial boundary conditions for the Schrödinger equation on a rectangular domain
HTML articles powered by AMS MathViewer
- by Gang Pang, Yibo Yang, Xavier Antoine and Shaoqiang Tang;
- Math. Comp. 90 (2021), 2731-2756
- DOI: https://doi.org/10.1090/mcom/3679
- Published electronically: July 30, 2021
- HTML | PDF | Request permission
Abstract:
Based on the semi-discrete artificial boundary condition introduced by Ji, Yang, and Antoine [Comput. Phys. Commun. 222 (2018), pp. 84–93] for the two-dimensional free Schrödinger equation in a computational rectangular domain, we propose to analyze the stability and convergence rate with respect to time of the resulting full scheme. We prove that the global scheme is $L^{2}$-stable and that the accuracy is second-order in time, confirming then the numerical results reported by Ji et al. (2018).References
- Xavier Antoine, Anton Arnold, Christophe Besse, Matthias Ehrhardt, and Achim Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys. 4 (2008), no. 4, 729–796. MR 2463189
- Xavier Antoine, Weizhu Bao, and Christophe Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun. 184 (2013), no. 12, 2621–2633. MR 3128901, DOI 10.1016/j.cpc.2013.07.012
- Xavier Antoine, Christophe Geuzaine, and Qinglin Tang, Perfectly matched layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates, Commun. Nonlinear Sci. Numer. Simul. 90 (2020), 105406, 16. MR 4114144, DOI 10.1016/j.cnsns.2020.105406
- X. Antoine, E. Lorin and Q. Tang, A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations, Mol. Phys., 115 (2017), no. 15-16, 1861–1879.
- Anton Arnold, Matthias Ehrhardt, Maike Schulte, and Ivan Sofronov, Discrete transparent boundary conditions for the Schrödinger equation on circular domains, Commun. Math. Sci. 10 (2012), no. 3, 889–916. MR 2911202, DOI 10.4310/CMS.2012.v10.n3.a9
- Anton Arnold, Matthias Ehrhardt, and Ivan Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability, Commun. Math. Sci. 1 (2003), no. 3, 501–556. MR 2069942
- Alain Bamberger, Patrick Joly, and Jean E. Roberts, Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem, SIAM J. Numer. Anal. 27 (1990), no. 2, 323–352. MR 1043609, DOI 10.1137/0727021
- Weizhu Bao and Yongyong Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models 6 (2013), no. 1, 1–135. MR 3005624, DOI 10.3934/krm.2013.6.1
- V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation, Wave Motion 14 (1991), no. 2, 123–128. MR 1125294, DOI 10.1016/0165-2125(91)90053-Q
- Eliane Bécache and Andrés Prieto, Remarks on the stability of Cartesian PMLs in corners, Appl. Numer. Math. 62 (2012), no. 11, 1639–1653. MR 2967508, DOI 10.1016/j.apnum.2012.05.003
- A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, An exact bounded perfectly matched layer for time-harmonic scattering problems, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 312–338. MR 2377444, DOI 10.1137/060670912
- A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems, J. Comput. Phys. 223 (2007), no. 2, 469–488. MR 2316797, DOI 10.1016/j.jcp.2006.09.018
- F. Collino, Conditions absorbantes d’ordre élevé pour les équations de Maxwell dans des domaines rectangulaires, Rapport Inria 1991, 1993, https://hal.inria.fr/inria-00074681.
- Francis Collino, Perfectly matched absorbing layers for the paraxial equations, J. Comput. Phys. 131 (1997), no. 1, 164–180. MR 1433710, DOI 10.1006/jcph.1996.5594
- Tomáš Dohnal, Perfectly matched layers for coupled nonlinear Schrödinger equations with mixed derivatives, J. Comput. Phys. 228 (2009), no. 23, 8752–8765. MR 2558775, DOI 10.1016/j.jcp.2009.08.023
- C. Farrell and U. Leonhardt, The perfectly matched layer in numerical simulations of nonlinear and matter waves, J. Opt. B-Quantum and Semiclass. Opt., 7 (2005), no. 1, 1–4.
- Thomas Fevens and Hong Jiang, Absorbing boundary conditions for the Schrödinger equation, SIAM J. Sci. Comput. 21 (1999), no. 1, 255–282. MR 1722142, DOI 10.1137/S1064827594277053
- Thomas Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 47–106. MR 1819643, DOI 10.1017/S0962492900002890
- Thomas Hagstrom and Timothy Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems, Wave Motion 39 (2004), no. 4, 327–338. New computational methods for wave propagation. MR 2058660, DOI 10.1016/j.wavemoti.2003.12.007
- Houde Han and Zhongyi Huang, Exact artificial boundary conditions for the Schrödinger equation in $\Bbb R^2$, Commun. Math. Sci. 2 (2004), no. 1, 79–94. MR 2082820
- R. Hazeltine and F. Waelbroeck, The framework of plasma physics, Perseus Books, Boca Raton, Florida, 2004, DOI 10.1201/9780429502804.
- Dan Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion 39 (2004), no. 4, 319–326. New computational methods for wave propagation. MR 2058659, DOI 10.1016/j.wavemoti.2003.12.004
- S. Ji, G. Pang, X. Antoine, and J. Zhang, Artificial boundary conditions for the semi-discretized one-dimensional nonlocal Schrödinger equation, to appear in J. Comput. Phys. https://hal.archives-ouvertes.fr/hal-02898080v1
- Songsong Ji, Yibo Yang, Gang Pang, and Xavier Antoine, Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains, Comput. Phys. Commun. 222 (2018), 84–93. MR 3725900, DOI 10.1016/j.cpc.2017.09.019
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. Translated and edited by Richard A. Silverman. MR 174795
- Buyang Li, Jiwei Zhang, and Chunxiong Zheng, Stability and error analysis for a second-order fast approximation of the one-dimensional Schrödinger equation under absorbing boundary conditions, SIAM J. Sci. Comput. 40 (2018), no. 6, A4083–A4104. MR 3890787, DOI 10.1137/17M1162111
- Hongwei Li, Xiaonan Wu, and Jiwei Zhang, Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary, Comput. Phys. Commun. 185 (2014), no. 6, 1606–1615. MR 3208371, DOI 10.1016/j.cpc.2014.03.001
- A. Modave, C. Geuzaine, and X. Antoine, Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering, J. Comput. Phys. 401 (2020), 109029, 24. MR 4038170, DOI 10.1016/j.jcp.2019.109029
- A. Modave, A. Atle, J. Chan, and T. Warburton, A GPU-accelerated nodal discontinuous Galerkin method with high-order absorbing boundary conditions and corner/edge compatibility, Internat. J. Numer. Methods Engrg. 112 (2017), no. 11, 1659–1686. MR 3732788, DOI 10.1002/nme.5576
- Anna Nissen and Gunilla Kreiss, An optimized perfectly matched layer for the Schrödinger equation, Commun. Comput. Phys. 9 (2011), no. 1, 147–179. MR 2678215, DOI 10.4208/cicp.010909.010410a
- Gang Pang, Songsong Ji, Yibo Yang, and Shaoqiang Tang, Eliminating corner effects in square lattice simulation, Comput. Mech. 62 (2018), no. 1, 111–122. MR 3812911, DOI 10.1007/s00466-017-1488-y
- E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28, (1926), no. 6, 1049.
- J. Senior, Optical fiber communications: principles and practice, Extended and Updated 2nd Ed., Prentice Hall, New York, 1992.
- Semyon V. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math. 27 (1998), no. 4, 465–532. Absorbing boundary conditions. MR 1644674, DOI 10.1016/S0168-9274(98)00025-7
- Chunxiong Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J. Comput. Phys. 227 (2007), no. 1, 537–556. MR 2361535, DOI 10.1016/j.jcp.2007.08.004
Bibliographic Information
- Gang Pang
- Affiliation: School of Mathematical Sciences, Beihang University, Beijing 100191, People’s Republic of China
- ORCID: 0000-0001-8844-1211
- Email: gangpang@buaa.edu.cn
- Yibo Yang
- Affiliation: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3401 Walnut St, Philadelphia, Pennsylvania 19104
- MR Author ID: 1183327
- Email: ybyang@seas.upenn.edu
- Xavier Antoine
- Affiliation: Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
- MR Author ID: 637398
- ORCID: 0000-0002-6501-7757
- Email: xavier.antoine@univ-lorraine.fr
- Shaoqiang Tang
- Affiliation: HEDPS, CAPT and LTCS, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- ORCID: 0000-0002-7387-5743
- Email: maotang@pku.edu.cn
- Received by editor(s): November 1, 2019
- Received by editor(s) in revised form: August 4, 2020, and March 27, 2021
- Published electronically: July 30, 2021
- Additional Notes: The first and fourth authors were supported partially by NSFC under contract numbers 11521202, 11832001, 11890681 and 11988102. The third author was supported by the CNRS LIASFMA (Laboratoire International Associé Sino-Français en Mathématiques Appliquées), University of Lorraine and of the French National Research Agency project NABUCO, grant ANR-17-CE40-0025. Parts of the work were done while the third author was a visiting Professor at Peking University (Department of Mechanics and Engineering Science).
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 90 (2021), 2731-2756
- MSC (2020): Primary 35J10, 65L20, 65L10, 65L12
- DOI: https://doi.org/10.1090/mcom/3679
- MathSciNet review: 4305367