An algorithmic approach to Chevalley’s Theorem on images of rational morphisms between affine varieties
HTML articles powered by AMS MathViewer
- by Mohamed Barakat and Markus Lange-Hegermann HTML | PDF
- Math. Comp. 91 (2022), 451-490 Request permission
Abstract:
The goal of this paper is to introduce a new constructive geometric proof of the affine version of Chevalley’s Theorem. This proof is algorithmic and a verbatim implementation resulted in an efficient code for computing the constructible image of rational maps between affine varieties. Our approach extends the known descriptions of uniform matrix product states to $\operatorname {uMPS}(2,2,5)$.References
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
- T. Bächler, Counting solutions of algebraic systems via triangular decomposition, Ph.D. thesis, RWTH Aachen, Germany, 2014.
- Thomas Bächler, Vladimir Gerdt, Markus Lange-Hegermann, and Daniel Robertz, Algorithmic Thomas decomposition of algebraic and differential systems, J. Symbolic Comput. 47 (2012), no. 10, 1233–1266. MR 2926124, DOI 10.1016/j.jsc.2011.12.043
- M. Barakat, T. Kuhmichel, and M. Lange-Hegermann, $\mathtt {Locales}$ – Locales, frames, coframes, lattices of locally closed subsets, and lattices of constructible sets, 2018–2019, https://homalg-project.github.io/pkg/Locales.
- M. Barakat, T. Kuhmichel, and M. Lange-Hegermann, $\mathtt {ZariskiFrames}$ – (Co)frames/Locales of Zariski closed/open subsets of affine, projective, or toric varieties, 2018–2019, https://homalg-project.github.io/pkg/ZariskiFrames.
- Yuval Bistritz and Alexander Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Linear Algebra Appl. 432 (2010), no. 8, 1995–2005. MR 2599838, DOI 10.1016/j.laa.2009.08.012
- Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293. MR 2795737, DOI 10.1142/S0219498811004562
- M. Barakat and M. Lange-Hegermann, LocalizeRingForHomalg: localize commutative rings at maximal ideals, ACM Commun. Comput. Algebra 44 (2011), 201–204.
- T. Bächler and M. Lange-Hegermann, AlgebraicThomas and DifferentialThomas: Thomas decomposition for algebraic and differential systems, 2008-2014, http://www.mathb.rwth-aachen.de/thomasdecomposition/.
- M. Barakat and M. Lange-Hegermann, uMPS(2,2,4), 2019, https://homalg-project.github.io/nb/uMPS224.
- M. Barakat and M. Lange-Hegermann, uMPS(2,2,5), 2019, https://homalg-project.github.io/nb/uMPS225.
- M. Barakat and M. Lange-Hegermann, Cavender-Farris-Neyman, 2020, https://homalg-project.github.io/nb/CFN_reduced.
- M. Barakat and M. Lange-Hegermann, uMPS(2,2,3), 2020, https://homalg-project.github.io/nb/uMPS223.
- M. Barakat, M. Lange-Hegermann, and S. Posur, Elimination via saturation, arXiv:1707.00925, 2017.
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- B. Buchberger, A note on the complexity of constructing Gröbner-bases, Computer algebra (London, 1983) Lecture Notes in Comput. Sci., vol. 162, Springer, Berlin, 1983, pp. 137–145. MR 774806, DOI 10.1007/3-540-12868-9_{9}8
- Rosemary Baines and Peter Vámos, An algorithm to compute the set of characteristics of a system of polynomial equations over the integers, J. Symbolic Comput. 35 (2003), no. 3, 269–279. MR 1962795, DOI 10.1016/S0747-7171(02)00134-7
- H. Cartan, Variétés algébriques affines, Séminaire Henri Cartan 8 (1955–1956), 12 p. (fr), Talk no. 3.
- C. Chevalley and H. Cartan, Schémas normaux ; morphismes ; ensembles constructibles, Séminaire Henri Cartan 8 (1955–1956), 10 p. (fr), Talk no. 7.
- Changbo Chen, Oleg Golubitsky, François Lemaire, Marc Moreno Maza, and Wei Pan, Comprehensive Triangular Decomposition, Computer Algebra in Scientific Computing (Berlin, Heidelberg) (Victor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, eds.), Lecture Notes in Computer Science, vol. 4770, Springer Berlin Heidelberg, 2007, pp. 73–101.
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- A. Czapliński, M. Michałek, and T. Seynnaeve, Uniform matrix product states from an algebraic geometer’s point of view, arXiv:1904.07563, 2019.
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2019.
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- S. Gutsche and S. Posur, Cap: categories, algorithms, programming, Computeralgebra-Rundbrief, 64, 14–17, March, 2019, https://fachgruppe-computeralgebra.de/data/CA-Rundbrief/car64.pdf,
- S. Gutsche, S. Posur, and Ø. Skartsæterhagen, On the syntax and semantics of $\mathtt {CAP}$, In: O. Hasan, M. Pfeiffer, G. D. Reis (eds.). Proceedings of the Workshop Computer Algebra in the Age of Types, Hagenberg, Austria, August 17, 2018, published at http://ceur-ws.org/Vol-2307/, 2018.
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155, DOI 10.1007/978-3-8348-9722-0
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558, DOI 10.1007/978-1-4757-2189-8
- Corey Harris, Mateusz Michałek, and Emre Can Sertöz, Computing images of polynomial maps, Adv. Comput. Math. 45 (2019), no. 5-6, 2845–2865. MR 4047019, DOI 10.1007/s10444-019-09715-8
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- Christine Jost, Computing characteristic classes and the topological Euler characteristic of complex projective schemes, J. Softw. Algebra Geom. 7 (2015), 31–39. MR 3484270, DOI 10.2140/jsag.2015.7.31
- Gregor Kemper, A course in commutative algebra, Graduate Texts in Mathematics, vol. 256, Springer, Heidelberg, 2011. MR 2766370, DOI 10.1007/978-3-642-03545-6
- D. Lazard, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Computer algebra (London, 1983) Lecture Notes in Comput. Sci., vol. 162, Springer, Berlin, 1983, pp. 146–156. MR 774807, DOI 10.1007/3-540-12868-9_{9}9
- D. Lazard, Ideal bases and primary decomposition: case of two variables, J. Symbolic Comput. 1 (1985), no. 3, 261–270. MR 849035, DOI 10.1016/S0747-7171(85)80035-3
- F. Lemaire, M. Moreno Maza, and Y. Xie, The RegularChains library in Maple, SIGSAM Bull. 39 (2005), no. 3, 96–97.
- Miguel A. Marco-Buzunáriz, A polynomial generalization of the Euler characteristic for algebraic sets, J. Singul. 4 (2012), 114–130. With an appendix by J. V. Rennemo. MR 3044490, DOI 10.5427/jsing.2012.4g
- M. Moreno Maza, On triangular decompositions of algebraic varieties, Tech. report, presented at the MEGA-2000 Conference, 1999.
- Ernst W. Mayr and Stephan Ritscher, Dimension-dependent bounds for Gröbner bases of polynomial ideals, J. Symbolic Comput. 49 (2013), 78–94. MR 2997841, DOI 10.1016/j.jsc.2011.12.018
- Antonio Montes and Michael Wibmer, Gröbner bases for polynomial systems with parameters, J. Symbolic Comput. 45 (2010), no. 12, 1391–1425. MR 2733386, DOI 10.1016/j.jsc.2010.06.017
- Wilhelm Plesken and Thomas Bächler, Counting polynomials for linear codes, hyperplane arrangements, and matroids, Doc. Math. 19 (2014), 285–312. MR 3178247
- Wilhelm Plesken, Counting solutions of polynomial systems via iterated fibrations, Arch. Math. (Basel) 92 (2009), no. 1, 44–56. MR 2471987, DOI 10.1007/s00013-008-2785-7
- Vladimir L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, Transform. Groups 26 (2021), no. 2, 671–689. MR 4283330, DOI 10.1007/s00031-020-09633-w
- Sebastian Posur, Linear systems over localizations of rings, Arch. Math. (Basel) 111 (2018), no. 1, 23–32. MR 3816974, DOI 10.1007/s00013-018-1183-z
- S. Posur, Methods of constructive category theory, arXiv:1908.04132, to appear in Contemp. Math., AMS, Aug. 2019.
- K. S. Sibirskiĭ, Algebraic invariants of a system of matrices, Sibirsk. Mat. . 9 (1968), 152–164 (Russian). MR 0223379
- The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu, 2019.
- R. Vakil, The rising sea: foundations of algebraic geometry, November 5, 2010, http://math.stanford.edu/~vakil/216blog/FOAGnov0510public.pdf
- Gilles Villard, On computing the resultant of generic bivariate polynomials, ISSAC’18—Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2018, pp. 391–398. MR 3840406, DOI 10.1145/3208976.3209020
- D. Wang, $\epsilon$psilon: description, help pages and examples of use, 2003, http://wang.cc4cm.org/epsilon/.
Additional Information
- Mohamed Barakat
- Affiliation: Department of mathematics, University of Siegen, 57068 Siegen, Germany
- MR Author ID: 706483
- ORCID: 0000-0003-3642-4190
- Email: mohamed.barakat@uni-siegen.de
- Markus Lange-Hegermann
- Affiliation: Department of electrical engineering and computer science, Ostwestfalen-Lippe University of Applied Sciences and Arts, 32657 Lemgo, Germany
- MR Author ID: 937506
- Email: markus.lange-hegermann@th-owl.de
- Received by editor(s): December 4, 2019
- Received by editor(s) in revised form: November 16, 2020
- Published electronically: September 22, 2021
- Additional Notes: This work was a contribution to Project II.1 of SFB-TRR 195 ‘Symbolic Tools in Mathematics and their Application’ funded by Deutsche Forschungsgemeinschaft (DFG)
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 451-490
- MSC (2020): Primary 13P10, 13P15, 68W30, 14Q20, 14R20
- DOI: https://doi.org/10.1090/mcom/3632
- MathSciNet review: 4350545