Asymptotic expansions of eigenvalues by both the Crouzeix–Raviart and enriched Crouzeix–Raviart elements
HTML articles powered by AMS MathViewer
- by Jun Hu and Limin Ma HTML | PDF
- Math. Comp. 91 (2022), 75-109 Request permission
Abstract:
Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix–Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart–Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart–Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions.References
- María G. Armentano and Ricardo G. Durán, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, Electron. Trans. Numer. Anal. 17 (2004), 93–101. MR 2040799
- I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447–471. MR 553353, DOI 10.1007/BF01399326
- I. Babuška and J. E. Osborn, Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues, SIAM J. Numer. Anal. 24 (1987), no. 6, 1249–1276. MR 917451, DOI 10.1137/0724082
- I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), no. 186, 275–297. MR 962210, DOI 10.1090/S0025-5718-1989-0962210-8
- H. Blum and R. Rannacher, Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation, J. Comput. Math. 8 (1990), no. 4, 321–332. MR 1149714
- Daniele Boffi, Ricardo G. Durán, Francesca Gardini, and Lucia Gastaldi, A posteriori error analysis for nonconforming approximation of multiple eigenvalues, Math. Methods Appl. Sci. 40 (2017), no. 2, 350–369. MR 3596542, DOI 10.1002/mma.3452
- Jan H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math. 68 (1994), no. 3, 311–324. MR 1313147, DOI 10.1007/s002110050064
- Wei Chen and Qun Lin, Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme, Adv. Comput. Math. 27 (2007), no. 1, 95–106. MR 2317923, DOI 10.1007/s10444-007-9031-x
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- A. Damle and G. C. Peterson, Understanding the eigenstructure of various triangles, SIAM Undergrad. Res. Online 3 (2010), 187–208.
- Yan Heng Ding and Qun Lin, Quadrature and extrapolation for the variable coefficient elliptic eigenvalue problem, Systems Sci. Math. Sci. 3 (1990), no. 4, 327–336. MR 1182754
- Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, DOI 10.1090/S0025-5718-1985-0771029-9
- Ricardo Durán, Superconvergence for rectangular mixed finite elements, Numer. Math. 58 (1990), no. 3, 287–298. MR 1075159, DOI 10.1007/BF01385626
- Jun Hu, Yunqing Huang, and Qun Lin, Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods, J. Sci. Comput. 61 (2014), no. 1, 196–221. MR 3254372, DOI 10.1007/s10915-014-9821-5
- Jun Hu and Limin Ma, Asymptotically exact a posteriori error estimates of eigenvalues by the Crouzeix-Raviart element and enriched Crouzeix-Raviart element, SIAM J. Sci. Comput. 42 (2020), no. 2, A797–A821. MR 4078805, DOI 10.1137/19M1261997
- Jun Hu and Rui Ma, Superconvergence of both the Crouzeix-Raviart and Morley elements, Numer. Math. 132 (2016), no. 3, 491–509. MR 3457437, DOI 10.1007/s00211-015-0729-2
- Jun Hu and Rui Ma, The enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements, J. Sci. Comput. 63 (2015), no. 2, 410–425. MR 3328190, DOI 10.1007/s10915-014-9899-9
- Jun Hu, Limin Ma, and Rui Ma, Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements, Adv. Comput. Math. 47 (2021), no. 4, Paper No. 52, 25. MR 4280527, DOI 10.1007/s10444-021-09874-7
- Yunqing Huang and Jinchao Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp. 77 (2008), no. 263, 1253–1268. MR 2398767, DOI 10.1090/S0025-5718-08-02051-6
- Shanghui Jia, Hehu Xie, Xiaobo Yin, and Shaoqin Gao, Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods, Numer. Methods Partial Differential Equations 24 (2008), no. 2, 435–448. MR 2382790, DOI 10.1002/num.20268
- J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Rev. 26 (1984), no. 2, 163–193. MR 738929, DOI 10.1137/1026033
- Yu-Wen Li, Global superconvergence of the lowest-order mixed finite element on mildly structured meshes, SIAM J. Numer. Anal. 56 (2018), no. 2, 792–815. MR 3780750, DOI 10.1137/17M112587X
- Qun Lin, Can we compute Laplace eigenvalues well, like computing $\pi$?, Int. J. Inf. Syst. Sci. 1 (2005), no. 2, 172–183. MR 2183243
- Qun Lin, Hung-Tsai Huang, and Zi-Cai Li, New expansions of numerical eigenvalues for $-\Delta u=\lambda \rho u$ by nonconforming elements, Math. Comp. 77 (2008), no. 264, 2061–2084. MR 2429874, DOI 10.1090/S0025-5718-08-02098-X
- Qun Lin, Hung-Tsai Huang, and Zi-Cai Li, New expansions of numerical eigenvalues by Wilson’s element, J. Comput. Appl. Math. 225 (2009), no. 1, 213–226. MR 2490184, DOI 10.1016/j.cam.2008.07.019
- Q. Lin and J. Lin, Finite element methods: Accuracy and Improvement, China Sci. Press, Beijing, (2006).
- Qun Lin and Tao Lü, Asymptotic expansions for finite element eigenvalues and finite element solution, Extrapolation procedures in the finite element method (Bonn, 1983) Bonner Math. Schriften, vol. 158, Univ. Bonn, Bonn, 1984, pp. 1–10. MR 793412
- Qun Lin and Dongsheng Wu, High-accuracy approximations for eigenvalue problems by the Carey non-conforming finite element, Comm. Numer. Methods Engrg. 15 (1999), no. 1, 19–31. MR 1671617, DOI 10.1002/(SICI)1099-0887(199901)15:1<19::AID-CNM220>3.0.CO;2-W
- Qun Lin and Hehu Xie, Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method, Appl. Numer. Math. 59 (2009), no. 8, 1884–1893. MR 2536089, DOI 10.1016/j.apnum.2009.01.011
- Qun Lin and Hehu Xie, New expansions of numerical eigenvalue for $-\Delta u=\lambda \rho u$ by linear elements on different triangular meshes, Int. J. Inf. Syst. Sci. 6 (2010), no. 1, 10–34. MR 2647211
- Qun Lin, Jun Ming Zhou, and Hong Tao Chen, Extrapolation of three-dimensional eigenvalue finite element approximation, Math. Pract. Theory 41 (2011), no. 11, 132–139 (Chinese, with English and Chinese summaries). MR 2868348
- P. Luo and Q. Lin, High accuracy analysis of the Adini’s nonconforming element, Computing 68 (2002), no. 1, 65–79. MR 1894400, DOI 10.1007/s006070200003
- Luisa Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), no. 3, 493–496. MR 787572, DOI 10.1137/0722029
- Ming Wang and Jinchao Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math. 103 (2006), no. 1, 155–169. MR 2207619, DOI 10.1007/s00211-005-0662-x
- L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aeronau. Quart. 19 (1968), 149–169.
- Rolf Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math. 33 (1979), no. 1, 23–42. MR 545740, DOI 10.1007/BF01396493
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
Additional Information
- Jun Hu
- Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 714525
- Email: hujun@math.pku.edu.cn
- Limin Ma
- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 1261964
- Email: maliminpku@gmail.com
- Received by editor(s): May 6, 2020
- Received by editor(s) in revised form: November 5, 2020, December 28, 2020, and January 24, 2021
- Published electronically: September 21, 2021
- Additional Notes: The first author was supported in part by NSFC #11625101. The second author was partially supported by Center for Computational Mathematics and Applications, The Pennsylvania State University.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 75-109
- MSC (2020): Primary 65N30
- DOI: https://doi.org/10.1090/mcom/3635
- MathSciNet review: 4350533