Constructing abelian extensions with prescribed norms
HTML articles powered by AMS MathViewer
- by Christopher Frei and Rodolphe Richard;
- Math. Comp. 91 (2022), 381-399
- DOI: https://doi.org/10.1090/mcom/3663
- Published electronically: July 22, 2021
- HTML | PDF | Request permission
Abstract:
Given a number field $K$, a finite abelian group $G$ and finitely many elements $\alpha _1,\ldots ,\alpha _t\in K$, we construct abelian extensions $L/K$ with Galois group $G$ that realise all of the elements $\alpha _1,\ldots ,\alpha _t$ as norms of elements in $L$. In particular, this shows existence of such extensions for any given parameters.
Our approach relies on class field theory and a recent formulation of Tate’s characterisation of the Hasse norm principle, a local-global principle for norms. The constructions are sufficiently explicit to be implemented on a computer, and we illustrate them with concrete examples.
References
- Henri Cohen, A survey of computational class field theory, J. Théor. Nombres Bordeaux 11 (1999), no. 1, 1–13 (English, with English and French summaries). Les XXèmes Journées Arithmétiques (Limoges, 1997). MR 1730429, DOI 10.5802/jtnb.235
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Claus Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), no. 235, 1293–1303. MR 1826583, DOI 10.1090/S0025-5718-00-01255-2
- Christopher Frei, Daniel Loughran, and Rachel Newton, The Hasse norm principle for Abelian extensions, Amer. J. Math. 140 (2018), no. 6, 1639–1685. MR 3884640, DOI 10.1353/ajm.2018.0048
- C. Frei, D. Loughran, and R. Newton. Number fields with prescribed norms, arXiv:1810.06024, 2018.
- Yonatan Harpaz and Olivier Wittenberg, Zéro-cycles sur les espaces homogènes et problème de Galois inverse, J. Amer. Math. Soc. 33 (2020), no. 3, 775–805 (French). MR 4127903, DOI 10.1090/jams/943
- Helmut Hasse, Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrestsymbol., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1931 (1931), 64–69.
- Wolfram Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311(312) (1979), 215–254. In memoriam Arnold Scholz. MR 549967, DOI 10.1515/crll.1979.311-312.215
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Denis Simon, Solving norm equations in relative number fields using $S$-units, Math. Comp. 71 (2002), no. 239, 1287–1305. MR 1898758, DOI 10.1090/S0025-5718-02-01309-1
- J. T. Tate, Global class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Academic Press, London, 1967, pp. 162–203. MR 220697
- Jesse Thorner and Asif Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135–1197. MR 3671433, DOI 10.2140/ant.2017.11.1135
Bibliographic Information
- Christopher Frei
- Affiliation: TU Graz, Institute of Analysis and Number Theory, Steyrergasse 30/II, 8010 Graz, Austria
- MR Author ID: 938397
- ORCID: 0000-0001-8962-9240
- Email: frei@math.tugraz.at
- Rodolphe Richard
- Affiliation: 13, rue du Croisic, 22200 Plouisy, Bretagne, France
- Address at time of publication: University College London, 25 Gordon Street, WC1H 0AY London, United Kingdom
- MR Author ID: 875874
- Email: rodolphe.richard@normalesup.org
- Received by editor(s): July 2, 2020
- Received by editor(s) in revised form: December 14, 2020, and April 8, 2021
- Published electronically: July 22, 2021
- Additional Notes: The first author was supported by EPSRC grant EP/T01170X/1. The second author was supported by ERC grant GeTeMo 617129, and Leverhulme Research Project Grant “Diophantine problems related to Shimura varieties”
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 381-399
- MSC (2020): Primary 11Y40, 11R37; Secondary 14G05, 11D57
- DOI: https://doi.org/10.1090/mcom/3663
- MathSciNet review: 4350543