Spanning the isogeny class of a power of an elliptic curve
HTML articles powered by AMS MathViewer
- by Markus Kirschmer, Fabien Narbonne, Christophe Ritzenthaler and Damien Robert;
- Math. Comp. 91 (2022), 401-449
- DOI: https://doi.org/10.1090/mcom/3672
- Published electronically: September 16, 2021
- HTML | PDF
Abstract:
Let $E$ be an ordinary elliptic curve over a finite field and $g$ be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of $E^g$. The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to $E^3$ and of the Igusa modular form in dimension $4$. We illustrate our algorithms with examples of curves with many rational points over finite fields.References
- N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205, DOI 10.1090/mmono/079
- Zavosh Amir-Khosravi, Serre’s tensor construction and moduli of abelian schemes, Manuscripta Math. 156 (2018), no. 3-4, 409–456. MR 3811797, DOI 10.1007/s00229-017-0976-x
- Jennifer S. Balakrishnan, Sorina Ionica, Kristin Lauter, and Christelle Vincent, Constructing genus-3 hyperelliptic Jacobians with CM, LMS J. Comput. Math. 19 (2016), no. suppl. A, 283–300. MR 3540961, DOI 10.1112/S1461157016000322
- G. Bisson, R. Cosset, and D. Robert, Avisogenies, Magma package devoted to the computation of isogenies between abelian varieties, 2010. http://avisogenies.gforge.inria.fr.
- Gaetan Bisson and Andrew V. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, J. Number Theory 131 (2011), no. 5, 815–831. MR 2772473, DOI 10.1016/j.jnt.2009.11.003
- Z. I. Borevič and D. K. Faddeev, Integral representations of quadratic rings, Vestnik Leningrad. Univ. 15 (1960), no. 19, 52–64 (Russian, with English summary). MR 153707
- B. Brinkmann and L. Gerritzen, The lowest term of the Schottky modular form, Math. Ann. 292 (1992), no. 2, 329–335. MR 1149038, DOI 10.1007/BF01444624
- Jan Hendrik Bruinier, Gerard van der Geer, Günter Harder, and Don Zagier, The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004; Edited by Kristian Ranestad. MR 2385372, DOI 10.1007/978-3-540-74119-0
- L. Candelori, The transformation laws of algebraic theta functions, arXiv:1609.04486, 2016.
- Tommaso Giorgio Centeleghe and Jakob Stix, Categories of abelian varieties over finite fields, I: Abelian varieties over $\Bbb {F}_p$, Algebra Number Theory 9 (2015), no. 1, 225–265. MR 3317765, DOI 10.2140/ant.2015.9.225
- Ching-Li Chai, Siegel moduli schemes and their compactifications over $\textbf {C}$, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 231–251. MR 861978
- Lynn Chua, Mario Kummer, and Bernd Sturmfels, Schottky algorithms: classical meets tropical, Math. Comp. 88 (2019), no. 319, 2541–2558. MR 3957905, DOI 10.1090/mcom/3406
- H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren (eds.), Handbook of elliptic and hyperelliptic curve cryptography, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006.
- R. Cosset, Application des fonctions thêta à la cryptographie sur courbes hyperelliptiques, Ph.D. thesis, Université Nancy-I, 2011.
- Romain Cosset and Damien Robert, Computing $(\ell ,\ell )$-isogenies in polynomial time on Jacobians of genus $2$ curves, Math. Comp. 84 (2015), no. 294, 1953–1975. MR 3335899, DOI 10.1090/S0025-5718-2014-02899-8
- Pierre Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969), 238–243 (French). MR 254059, DOI 10.1007/BF01406076
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- T. Dupuy, K. Kedlaya, D. Roe, and C. Vincent, Isogeny classes of abelian varieties over finite fields in the LMFDB, arXiv:2003.05380, 2020.
- Kirsten Eisenträger and Kristin Lauter, A CRT algorithm for constructing genus 2 curves over finite fields, Arithmetics, geometry, and coding theory (AGCT 2005), Sémin. Congr., vol. 21, Soc. Math. France, Paris, 2010, pp. 161–176 (English, with English and French summaries). MR 2856565
- Andreas Enge, The complexity of class polynomial computation via floating point approximations, Math. Comp. 78 (2009), no. 266, 1089–1107. MR 2476572, DOI 10.1090/S0025-5718-08-02200-X
- Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353, DOI 10.1007/978-3-662-02632-8
- Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, Graduate Studies in Mathematics, vol. 37, American Mathematical Society, Providence, RI, 2001. An introduction with applications to uniformization theorems, partition identities and combinatorial number theory. MR 1850752, DOI 10.1090/gsm/037
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI 10.1090/S0025-5718-1985-0777278-8
- Alessio Fiorentino, Weber’s formula for the bitangents of a smooth plane quartic, Presses universitaires de Franche-Comté, 2019 (en)., DOI 10.5802/pmb.33
- Wee Teck Gan and Jiu-Kang Yu, Group schemes and local densities, Duke Math. J. 105 (2000), no. 3, 497–524. MR 1801770, DOI 10.1215/S0012-7094-00-10535-2
- A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Publ. math. IHES 20 (1964), no. 24, 1965.
- Safia Haloui, The characteristic polynomials of abelian varieties of dimensions 3 over finite fields, J. Number Theory 130 (2010), no. 12, 2745–2752. MR 2684495, DOI 10.1016/j.jnt.2010.06.008
- Safia Haloui and Vijaykumar Singh, The characteristic polynomials of abelian varieties of dimension 4 over finite fields, Arithmetic, geometry, cryptography and coding theory, Contemp. Math., vol. 574, Amer. Math. Soc., Providence, RI, 2012, pp. 59–68. MR 2961400, DOI 10.1090/conm/574/11446
- Ki-ichiro Hashimoto and Harutaka Koseki, Class numbers of definite unimodular Hermitian forms over the rings of imaginary quadratic fields, Tohoku Math. J. (2) 41 (1989), no. 1, 1–30. MR 985301, DOI 10.2748/tmj/1178227865
- —, Class numbers of positive definite binary and ternary unimodular Hermitian forms, Tohoku Math. J. (2) 41 (1989), no. 2, 171–216.
- Daiki Hayashida, The characteristic polynomials of abelian varieties of higher dimension over finite fields, J. Number Theory 196 (2019), 205–222. MR 3906475, DOI 10.1016/j.jnt.2018.09.014
- B. Hemkemeier and F. Vallentin, Incremental algorithms for lattice problems, Electronic Colloquium on Computational Complexity, vol. 52, 1998, revision 1.
- Detlev W. Hoffmann, On positive definite Hermitian forms, Manuscripta Math. 71 (1991), no. 4, 399–429. MR 1104993, DOI 10.1007/BF02568415
- Taira Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95. MR 229642, DOI 10.2969/jmsj/02010083
- Everett W. Howe, Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2361–2401. MR 1297531, DOI 10.1090/S0002-9947-1995-1297531-4
- Everett W. Howe, Enric Nart, and Christophe Ritzenthaler, Jacobians in isogeny classes of abelian surfaces over finite fields, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 1, 239–289 (English, with English and French summaries). MR 2514865, DOI 10.5802/aif.2430
- Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort, Supersingular curves of genus two and class numbers, Compositio Math. 57 (1986), no. 2, 127–152. MR 827350
- Takashi Ichikawa, Theta constants and Teichmüller modular forms, J. Number Theory 61 (1996), no. 2, 409–419. MR 1423061, DOI 10.1006/jnth.1996.0156
- Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817–855. MR 229643, DOI 10.2307/2373243
- Jun-ichi Igusa, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 531–545 (1982). MR 656035
- Jun-ichi Igusa, Schottky’s invariant and quadratic forms, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser Verlag, Basel-Boston, Mass., 1981, pp. 352–362. MR 661078
- Ronald Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441–465. MR 150128, DOI 10.2307/2372982
- Bruce W. Jordan, Allan G. Keeton, Bjorn Poonen, Eric M. Rains, Nicholas Shepherd-Barron, and John T. Tate, Abelian varieties isogenous to a power of an elliptic curve, Compos. Math. 154 (2018), no. 5, 934–959. MR 3798590, DOI 10.1112/S0010437X17007990
- Ernst Kani, Products of CM elliptic curves, Collect. Math. 62 (2011), no. 3, 297–339. MR 2825715, DOI 10.1007/s13348-010-0029-1
- George R. Kempf, Linear systems on abelian varieties, Amer. J. Math. 111 (1989), no. 1, 65–94. MR 980300, DOI 10.2307/2374480
- M. Kirschmer, Definite quadratic and hermitian forms with small class number, Habilitation, RWTH Aachen University, 2016.
- Markus Kirschmer, Determinant groups of Hermitian lattices over local fields, Arch. Math. (Basel) 113 (2019), no. 4, 337–347. MR 4008068, DOI 10.1007/s00013-019-01348-z
- M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert, Fromlatticestomodularforms, Computation of Modular Forms in the Isogeny Class Spanned by Products of Elliptic Curves, 4 2020. https://gitlab.inria.fr/roberdam/fromlatticestomodularforms.
- Martin Kneser, Strong approximation, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 187–196. MR 213361
- Shoji Koizumi, Theta relations and projective normality of Abelian varieties, Amer. J. Math. 98 (1976), no. 4, 865–889. MR 480543, DOI 10.2307/2374034
- Gilles Lachaud and Christophe Ritzenthaler, On some questions of Serre on abelian threefolds, Algebraic geometry and its applications, Ser. Number Theory Appl., vol. 5, World Sci. Publ., Hackensack, NJ, 2008, pp. 88–115. MR 2484050, DOI 10.1142/9789812793430_{0}005
- Gilles Lachaud, Christophe Ritzenthaler, and Alexey Zykin, Jacobians among abelian threefolds: a formula of Klein and a question of Serre, Math. Res. Lett. 17 (2010), no. 2, 323–333. MR 2644379, DOI 10.4310/MRL.2010.v17.n2.a11
- Joan-C. Lario, Anna Somoza, and Christelle Vincent, An inverse Jacobian algorithm for Picard curves, Res. Number Theory 7 (2021), no. 2, Paper No. 32, 23. MR 4245483, DOI 10.1007/s40993-021-00253-1
- K. Lauter, On maximal genus 3 curves over finite fields with an appendix by J. P. Serre, Compos. Math. 154 (2018), no. 5, 934–959.
- Reynald Lercier and Christophe Ritzenthaler, Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects, J. Algebra 372 (2012), 595–636. MR 2990029, DOI 10.1016/j.jalgebra.2012.07.054
- Reynald Lercier, Christophe Ritzenthaler, Florent Rovetta, and Jeroen Sijsling, Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields, LMS J. Comput. Math. 17 (2014), no. suppl. A, 128–147. MR 3240800, DOI 10.1112/S146115701400031X
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- E. Lorenzo García, On different expressions for invariants of hyperelliptic curves of genus 3, 2019, To appear in Journal of the Math. Soc. Japan.
- David Lubicz and Damien Robert, Computing isogenies between abelian varieties, Compos. Math. 148 (2012), no. 5, 1483–1515. MR 2982438, DOI 10.1112/S0010437X12000243
- David Lubicz and Damien Robert, Computing separable isogenies in quasi-optimal time, LMS J. Comput. Math. 18 (2015), no. 1, 198–216. MR 3349315, DOI 10.1112/S146115701400045X
- David Lubicz and Damien Robert, Arithmetic on abelian and Kummer varieties, Finite Fields Appl. 39 (2016), 130–158. MR 3475546, DOI 10.1016/j.ffa.2016.01.009
- Stefano Marseglia, Computing abelian varieties over finite fields isogenous to a power, Res. Number Theory 5 (2019), no. 4, Paper No. 35, 17. MR 4030241, DOI 10.1007/s40993-019-0174-x
- T. Matsusaka, On a theorem of Torelli, Amer. J. Math. 80 (1958), 784–800. MR 97398, DOI 10.2307/2372783
- S. Meagher, Twists of genus $3$ and their Jacobians, Ph.D. thesis, Rijksuniversiteit Groningen, 2008.
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- Ben Moonen and Frans Oort, The Torelli locus and special subvarieties, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 549–594. MR 3184184
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737
- D. Mumford, On the equations defining abelian varieties. II, Invent. Math. 3 (1967), 75–135. MR 219541, DOI 10.1007/BF01389741
- David Mumford, Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman; Reprint of the 1983 edition. MR 2352717, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Tata lectures on theta. II, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura; Reprint of the 1984 original. MR 2307768, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Tata lectures on theta. III, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. With collaboration of Madhav Nori and Peter Norman; Reprint of the 1991 original. MR 2307769, DOI 10.1007/978-0-8176-4578-6
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, Berlin-Göttingen-Heidelberg; Academic Press, Inc., Publishers, New York, 1963. MR 152507, DOI 10.1007/978-3-642-62031-7
- Frans Oort and Kenji Ueno, Principally polarized abelian varieties of dimension two or three are Jacobian varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 377–381. MR 364265
- Abhishek Oswal and Ananth N. Shankar, Almost ordinary abelian varieties over finite fields, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 923–937. MR 4111929, DOI 10.1112/jlms.12291
- Christophe Ritzenthaler, Explicit computations of Serre’s obstruction for genus-3 curves and application to optimal curves, LMS J. Comput. Math. 13 (2010), 192–207. MR 2653834, DOI 10.1112/S1461157009000576
- Christophe Ritzenthaler, Optimal curves of genus 1, 2 and 3, Actes de la Conférence “Théorie des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2011, Presses Univ. Franche-Comté, Besançon, 2011, pp. 99–117 (English, with English and French summaries). MR 2894270
- D. Robert, Theta functions and cryptographic applications, Ph.D. thesis, Université Henri-Poincarré, Nancy 1, France, 2010.
- Alexander Schiemann, Classification of Hermitian forms with the neighbour method, J. Symbolic Comput. 26 (1998), no. 4, 487–508. MR 1646667, DOI 10.1006/jsco.1998.0225
- Alexander Schiemann, Classification of Hermitian forms with the neighbour method, J. Symbolic Comput. 26 (1998), no. 4, 487–508. MR 1646667, DOI 10.1006/jsco.1998.0225
- Jean-Pierre Serre, Rational points on curves over finite fields, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 18, Société Mathématique de France, Paris, [2020] ©2020. With contributions by Everett Howe, Joseph Oesterlé and Christophe Ritzenthaler; Edited by Alp Bassa, Elisa Lorenzo García, Christophe Ritzenthaler and René Schoof. MR 4242817
- Goro Shimura, Arithmetic of unitary groups, Ann. of Math. (2) 79 (1964), 369–409. MR 158882, DOI 10.2307/1970551
- J. Sijsling, Curve reconstruction, Magma Code for Reconstructing Hyperelliptic Curves of Genus up to 3 from Their Period Matrices, December 2020. https://github.com/JRSijsling/curve_reconstruction.
- Marco Streng, Computing Igusa class polynomials, Math. Comp. 83 (2014), no. 285, 275–309. MR 3120590, DOI 10.1090/S0025-5718-2013-02712-3
- Andrew V. Sutherland, Computing Hilbert class polynomials with the Chinese remainder theorem, Math. Comp. 80 (2011), no. 273, 501–538. MR 2728992, DOI 10.1090/S0025-5718-2010-02373-7
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI 10.1007/BF01404549
- G. van der Geer, E. W. Howe, K. E. Lauter, and C. Ritzenthaler, Tables of curves with many points, 2009. See tables at https://manypoints.org
- William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560. MR 265369, DOI 10.24033/asens.1183
- H. Weber, Theory of abelian functions of genus 3 (Theorie der Abelschen Functionen vom Geschlecht 3), G. Reimer, Berlin, Germany, 1876.
- Annegret Weng, A class of hyperelliptic CM-curves of genus three, J. Ramanujan Math. Soc. 16 (2001), no. 4, 339–372. MR 1877806
- Jiangwei Xue, Tse-Chung Yang, and Chia-Fu Yu, Supersingular abelian surfaces and Eichler’s class number formula, Asian J. Math. 23 (2019), no. 4, 651–680. MR 4052723, DOI 10.4310/AJM.2019.v23.n4.a6
- Alexey Zaytsev, Optimal curves of low genus over finite fields, Finite Fields Appl. 37 (2016), 203–224. MR 3426586, DOI 10.1016/j.ffa.2015.09.008
Bibliographic Information
- Markus Kirschmer
- Affiliation: Universität Paderborn, Fakultät EIM, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany
- MR Author ID: 892539
- Email: markus.kirschmer@math.upb.de
- Fabien Narbonne
- Affiliation: Univ. Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
- Email: fabien.narbonne@univ-rennes1.fr
- Christophe Ritzenthaler
- Affiliation: Univ. Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
- MR Author ID: 702917
- Email: christophe.ritzenthaler@univ-rennes1.fr
- Damien Robert
- Affiliation: INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex, France; and Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex, France
- MR Author ID: 919800
- Email: damien.robert@inria.fr
- Received by editor(s): April 15, 2020
- Received by editor(s) in revised form: December 18, 2020, May 9, 2021, and May 25, 2021
- Published electronically: September 16, 2021
- © Copyright 2021 by the authors
- Journal: Math. Comp. 91 (2022), 401-449
- MSC (2020): Primary 14H42, 14G15, 14H45, 16H20
- DOI: https://doi.org/10.1090/mcom/3672
- MathSciNet review: 4350544