Stable broken ${\boldsymbol H}(\boldsymbol {\operatorname {curl}})$ polynomial extensions and $p$-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem
HTML articles powered by AMS MathViewer
- by T. Chaumont-Frelet, A. Ern and M. Vohralík;
- Math. Comp. 91 (2022), 37-74
- DOI: https://doi.org/10.1090/mcom/3673
- Published electronically: September 28, 2021
- HTML | PDF | Request permission
Abstract:
We study extensions of piecewise polynomial data prescribed in a patch of tetrahedra sharing an edge. We show stability in the sense that the minimizers over piecewise polynomial spaces with prescribed tangential component jumps across faces and prescribed piecewise curl in elements are subordinate in the broken energy norm to the minimizers over the broken $\boldsymbol H(\boldsymbol {\operatorname {curl}})$ space with the same prescriptions. Our proofs are constructive and yield constants independent of the polynomial degree. We then detail the application of this result to the a posteriori error analysis of the curl–curl problem discretized with Nédélec finite elements of arbitrary order. The resulting estimators are reliable, locally efficient, polynomial-degree-robust, and inexpensive. They are constructed by a broken patchwise equilibration which, in particular, does not produce a globally $\boldsymbol H(\boldsymbol {\operatorname {curl}})$-conforming flux. The equilibration is only related to edge patches and can be realized without solutions of patch problems by a sweep through tetrahedra around every mesh edge. The error estimates become guaranteed when the regularity pick-up constant is explicitly known. Numerical experiments illustrate the theoretical findings.References
- Franck Assous, Patrick Ciarlet, and Simon Labrunie, Mathematical foundations of computational electromagnetism, Applied Mathematical Sciences, vol. 198, Springer, Cham, 2018. MR 3793186, DOI 10.1007/978-3-319-70842-3
- Rudi Beck, Ralf Hiptmair, Ronald H. W. Hoppe, and Barbara Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal. 34 (2000), no. 1, 159–182 (English, with English and French summaries). MR 1735971, DOI 10.1051/m2an:2000136
- Jan Blechta, Josef Málek, and Martin Vohralík, Localization of the $W^{-1,q}$ norm for local a posteriori efficiency, IMA J. Numer. Anal. 40 (2020), no. 2, 914–950. MR 4092274, DOI 10.1093/imanum/drz002
- Alain Bossavit, Computational electromagnetism, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. MR 1488417
- Dietrich Braess, Veronika Pillwein, and Joachim Schöberl, Equilibrated residual error estimates are $p$-robust, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 13-14, 1189–1197. MR 2500243, DOI 10.1016/j.cma.2008.12.010
- Dietrich Braess and Joachim Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651–672. MR 2373174, DOI 10.1090/S0025-5718-07-02080-7
- Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohralík, Polynomial-degree-robust $H(\textrm {curl})$-stability of discrete minimization in a tetrahedron, C. R. Math. Acad. Sci. Paris 358 (2020), no. 9-10, 1101–1110 (English, with English and French summaries). MR 4196782, DOI 10.5802/crmath.133
- Seng-Kee Chua and Richard L. Wheeden, Estimates of best constants for weighted Poincaré inequalities on convex domains, Proc. London Math. Soc. (3) 93 (2006), no. 1, 197–226. MR 2235947, DOI 10.1017/S0024611506015826
- Martin Costabel, Monique Dauge, and Serge Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 627–649. MR 1713241, DOI 10.1051/m2an:1999155
- Martin Costabel and Alan McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z. 265 (2010), no. 2, 297–320. MR 2609313, DOI 10.1007/s00209-009-0517-8
- E. Creusé, Y. Le Menach, S. Nicaise, F. Piriou, and R. Tittarelli, Two guaranteed equilibrated error estimators for harmonic formulations in eddy current problems, Comput. Math. Appl. 77 (2019), no. 6, 1549–1562. MR 3926828, DOI 10.1016/j.camwa.2018.08.046
- Emmanuel Creusé, Serge Nicaise, and Roberta Tittarelli, A guaranteed equilibrated error estimator for the $\mathbf {A}-\varphi$ and $\mathbf {T}-\Omega$ magnetodynamic harmonic formulations of the Maxwell system, IMA J. Numer. Anal. 37 (2017), no. 2, 750–773. MR 3649425, DOI 10.1093/imanum/drw026
- Patrik Daniel, Alexandre Ern, Iain Smears, and Martin Vohralík, An adaptive $hp$-refinement strategy with computable guaranteed bound on the error reduction factor, Comput. Math. Appl. 76 (2018), no. 5, 967–983. MR 3846247, DOI 10.1016/j.camwa.2018.05.034
- Leszek Demkowicz, Computing with $hp$-adaptive finite elements. Vol. 1, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. One and two dimensional elliptic and Maxwell problems; With 1 CD-ROM (UNIX). MR 2267112, DOI 10.1201/9781420011692
- Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. I, SIAM J. Numer. Anal. 46 (2008), no. 6, 3006–3031. MR 2439500, DOI 10.1137/070698786
- Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. II, SIAM J. Numer. Anal. 47 (2009), no. 5, 3293–3324. MR 2551195, DOI 10.1137/070698798
- L. Demkowicz, J. Gopalakrishnan, and J. Schöberl, Polynomial extension operators. Part III, Math. Comp. 81 (2012), no. 279, 1289–1326. MR 2904580, DOI 10.1090/S0025-5718-2011-02536-6
- Philippe Destuynder and Brigitte Métivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379–1396. MR 1648383, DOI 10.1090/S0025-5718-99-01093-5
- C. Dobrzynski, MMG3D: user guide, Technical Report 422, 2012.
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Alexandre Ern, Thirupathi Gudi, Iain Smears, and Martin Vohralík, Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal $hp$ approximation estimates in ${\boldsymbol H}(\mathrm {div})$, IMA J. Numer. Anal. (2021). DOI 10.1093/imanum/draa103.
- Alexandre Ern and Jean-Luc Guermond, Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, vol. 72, Springer, Cham, [2021] ©2021. MR 4242224, DOI 10.1007/978-3-030-56341-7
- Alexandre Ern and Jean-Luc Guermond, Finite elements II—Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, vol. 73, Springer, Cham, [2021] ©2021. MR 4269305, DOI 10.1007/978-3-030-56923-5
- Alexandre Ern and Martin Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058–1081. MR 3335498, DOI 10.1137/130950100
- Alexandre Ern and Martin Vohralík, Stable broken $H^1$ and $H(\textrm {div})$ polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, Math. Comp. 89 (2020), no. 322, 551–594. MR 4044442, DOI 10.1090/mcom/3482
- Paolo Fernandes and Gianni Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci. 7 (1997), no. 7, 957–991. MR 1479578, DOI 10.1142/S0218202597000487
- K. O. Friedrichs, Differential forms on Riemannian manifolds, Comm. Pure Appl. Math. 8 (1955), 551–590. MR 87763, DOI 10.1002/cpa.3160080408
- Matthew P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc. 78 (1955), 426–444. MR 68888, DOI 10.1090/S0002-9947-1955-0068888-1
- Joscha Gedicke, Sjoerd Geevers, and Ilaria Perugia, An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems, J. Sci. Comput. 83 (2020), no. 3, Paper No. 58, 23. MR 4110650, DOI 10.1007/s10915-020-01224-x
- Joscha Gedicke, Sjoerd Geevers, Ilaria Perugia, and Joachim Schöberl, A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems, SIAM J. Numer. Anal. 59 (2021), no. 4, 2237–2253. MR 4298538, DOI 10.1137/20M1333365
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- A. Hannukainen, Functional type a posteriori error estimates for Maxwell’s equations, Numerical mathematics and advanced applications, Springer, Berlin, 2008, pp. 41–48. MR 3615865
- R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237–339. MR 2009375, DOI 10.1017/S0962492902000041
- Ralf Hiptmair and Clemens Pechstein, Discrete regular decompositions of tetrahedral discrete 1-forms (Ulrich Langer, Dirk Pauly, and Sergey Repin, eds.), Maxwell’s Equations: Analysis and Numerics, De Gruyter, Berlin, Boston, 2019. Chapter 7., DOI 10.1515/9783110543612-007
- Martin W. Licht, Higher-order finite element de Rham complexes, partially localized flux reconstructions, and applications. 2019, Preprint.
- R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394–1414. MR 2114283, DOI 10.1137/S0036142903433790
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- Rafael Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the $h$-$p$ version of the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), no. 1, 282–314. MR 1445738, DOI 10.1137/S0036142994267552
- Jean-Claude Nédélec, Mixed finite elements in ${\mathbb {R}}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160 (81k:65125), DOI 10.1007/BF01396415
- Pekka Neittaanmäki and Sergey Repin, Guaranteed error bounds for conforming approximations of a Maxwell type problem, Applied and numerical partial differential equations, Comput. Methods Appl. Sci., vol. 15, Springer, New York, 2010, pp. 199–211. MR 2642690, DOI 10.1007/978-90-481-3239-3_{1}5
- S. Nicaise and E. Creusé, A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes, Calcolo 40 (2003), no. 4, 249–271. MR 2025712, DOI 10.1007/s10092-003-0077-y
- Paul W. Gross and P. Robert Kotiuga, Electromagnetic theory and computation: a topological approach, Mathematical Sciences Research Institute Publications, vol. 48, Cambridge University Press, Cambridge, 2004. MR 2067778, DOI 10.1017/CBO9780511756337
- W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. MR 25902, DOI 10.1090/S0033-569X-1947-25902-8
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- S. Repin, Functional a posteriori estimates for Maxwell’s equation, J. Math. Sci. (N.Y.) 142 (2007), no. 1, 1821–1827. Problems in mathematical analysis. No. 34. MR 2331641, DOI 10.1007/s10958-007-0091-8
- Ch. Schwab, $p$- and $hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR 1695813
- Andreas Veeser and Rüdiger Verfürth, Poincaré constants for finite element stars, IMA J. Numer. Anal. 32 (2012), no. 1, 30–47. MR 2875242, DOI 10.1093/imanum/drr011
- Martin Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397–438. MR 2765501, DOI 10.1007/s10915-010-9410-1
- Ch. Weber, A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci. 2 (1980), no. 1, 12–25. MR 561375, DOI 10.1002/mma.1670020103
Bibliographic Information
- T. Chaumont-Frelet
- Affiliation: Inria, 2004 Route des Lucioles, 06902 Valbonne, France; and Laboratoire J.A. Dieudonné, Parc Valrose, 28 Avenue Valrose, 06108 Nice, France
- MR Author ID: 999028
- Email: theophile.chaumont@inria.fr
- A. Ern
- Affiliation: CERMICS, Ecole des Ponts, 77455 Marne-la-Valle, France; and Inria, 2 rue Simone Iff, 75589 Paris, France
- MR Author ID: 349433
- Email: alexandre.ern@enpc.fr
- M. Vohralík
- Affiliation: Inria, 2 rue Simone Iff, 75589 Paris, France; and CERMICS, Ecole des Ponts, 77455 Marne-la-Valle, France
- ORCID: 0000-0002-8838-7689
- Email: martin.vohralik@inria.fr
- Received by editor(s): May 28, 2020
- Received by editor(s) in revised form: May 3, 2021
- Published electronically: September 28, 2021
- Additional Notes: This project had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 647134 GATIPOR)
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 37-74
- MSC (2020): Primary 65N30, 78M10, 65N15
- DOI: https://doi.org/10.1090/mcom/3673
- MathSciNet review: 4350532