Accuracy controlled data assimilation for parabolic problems
HTML articles powered by AMS MathViewer
- by Wolfgang Dahmen, Rob Stevenson and Jan Westerdiep;
- Math. Comp. 91 (2022), 557-595
- DOI: https://doi.org/10.1090/mcom/3680
- Published electronically: September 24, 2021
- HTML | PDF | Request permission
Abstract:
This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic partial differential equation. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.References
- Owe Axelsson and Igor Kaporin, Error norm estimation and stopping criteria in preconditioned conjugate gradient iterations, Numer. Linear Algebra Appl. 8 (2001), no. 4, 265–286. MR 1831936, DOI 10.1002/nla.244
- Roman Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal. 33 (2013), no. 1, 242–260. MR 3020957, DOI 10.1093/imanum/drs014
- Roman Andreev, Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations, SIAM J. Sci. Comput. 38 (2016), no. 1, A216–A242. MR 3449910, DOI 10.1137/140998639
- A. C. L. Ashton, Elliptic PDEs with constant coefficients on convex polyhedra via the unified method, J. Math. Anal. Appl. 425 (2015), no. 1, 160–177. MR 3299655, DOI 10.1016/j.jmaa.2014.12.027
- Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, and Jérémi Dardé, Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case, Inverse Probl. Imaging 9 (2015), no. 4, 971–1002. MR 3461700, DOI 10.3934/ipi.2015.9.971
- Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal. 43 (2011), no. 3, 1457–1472. MR 2821591, DOI 10.1137/100795772
- Erik Burman, Ali Feizmohammadi, Arnaud Münch, and Lauri Oksanen, Space time stabilized finite element methods for a unique continuation problem subject to the wave equation, ESAIM Math. Model. Numer. Anal. 55 (2021), no. suppl., S969–S991. MR 4221321, DOI 10.1051/m2an/2020062
- Erik Burman, Jonathan Ish-Horowicz, and Lauri Oksanen, Fully discrete finite element data assimilation method for the heat equation, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 5, 2065–2082. MR 3893359, DOI 10.1051/m2an/2018030
- Erik Burman, Mats G. Larson, and Lauri Oksanen, Primal-dual mixed finite element methods for the elliptic Cauchy problem, SIAM J. Numer. Anal. 56 (2018), no. 6, 3480–3509. MR 3885757, DOI 10.1137/17M1163335
- Erik Burman and Lauri Oksanen, Data assimilation for the heat equation using stabilized finite element methods, Numer. Math. 139 (2018), no. 3, 505–528. MR 3814604, DOI 10.1007/s00211-018-0949-3
- Laurent Bourgeois and Arnaud Recoquillay, A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 1, 123–145. MR 3808155, DOI 10.1051/m2an/2018008
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Jalal Fadili, Olga Mula, and James Nichols, Optimal reduced model algorithms for data-based state estimation, SIAM J. Numer. Anal. 58 (2020), no. 6, 3355–3381. MR 4178381, DOI 10.1137/19M1255185
- Carsten Carstensen, Leszek Demkowicz, and Jay Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal. 52 (2014), no. 3, 1335–1353. MR 3215064, DOI 10.1137/130924913
- Albert Cohen, Wolfgang Dahmen, and Gerrit Welper, Adaptivity and variational stabilization for convection-diffusion equations, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 5, 1247–1273. MR 2916380, DOI 10.1051/m2an/2012003
- Long Chen, A simple construction of a Fortin operator for the two dimensional Taylor-Hood element, Comput. Math. Appl. 68 (2014), no. 10, 1368–1373. MR 3272546, DOI 10.1016/j.camwa.2014.09.003
- R. Daley, Atmospheric data analysis, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, UK, 1994.
- Jérémi Dardé, Antti Hannukainen, and Nuutti Hyvönen, An $H_{\mathsf {div}}$-based mixed quasi-reversibility method for solving elliptic Cauchy problems, SIAM J. Numer. Anal. 51 (2013), no. 4, 2123–2148. MR 3079321, DOI 10.1137/120895123
- Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075, DOI 10.1007/978-3-642-58090-1
- Thomas Führer and Michael Karkulik, Space-time least-squares finite elements for parabolic equations, Comput. Math. Appl. 92 (2021), 27–36. MR 4242919, DOI 10.1016/j.camwa.2021.03.004
- G. H. Golub and G. Meurant, Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods, BIT 37 (1997), no. 3, 687–705. Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996). MR 1483681, DOI 10.1007/BF02510247
- Gregor Gantner and Rob Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal. 55 (2021), no. 1, 283–299. MR 4216839, DOI 10.1051/m2an/2020084
- John M. Lewis, S. Lakshmivarahan, and Sudarshan Dhall, Dynamic data assimilation, Encyclopedia of Mathematics and its Applications, vol. 104, Cambridge University Press, Cambridge, 2006. A least squares approach. MR 2268247, DOI 10.1017/CBO9780511526480
- Andrew J. Majda, Introduction to turbulent dynamical systems in complex systems, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 5, Springer, [Cham], 2016. MR 3560633, DOI 10.1007/978-3-319-32217-9
- Yvon Maday, Anthony T. Patera, James D. Penn, and Masayuki Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, Internat. J. Numer. Methods Engrg. 102 (2015), no. 5, 933–965. MR 3341243, DOI 10.1002/nme.4747
- Arnaud Münch and Diego A. Souza, Inverse problems for linear parabolic equations using mixed formulations—Part 1: Theoretical analysis, J. Inverse Ill-Posed Probl. 25 (2017), no. 4, 445–468. MR 3680382, DOI 10.1515/jiip-2015-0112
- Gérard Meurant and Petr Tichý, On computing quadrature-based bounds for the $A$-norm of the error in conjugate gradients, Numer. Algorithms 62 (2013), no. 2, 163–191. MR 3011386, DOI 10.1007/s11075-012-9591-9
- Nikolaos Rekatsinas and Rob Stevenson, An optimal adaptive wavelet method for first order system least squares, Numer. Math. 140 (2018), no. 1, 191–237. MR 3832986, DOI 10.1007/s00211-018-0961-7
- J. Sch\oumlautberl, NETGEN an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Vis. Sci. 1 (1997), no. 1.
- J. Sch\oumlautberl, C++11 implementation of finite elements in ngsolve, Technical report, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014.
- Christoph Schwab and Rob Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp. 78 (2009), no. 267, 1293–1318. MR 2501051, DOI 10.1090/S0025-5718-08-02205-9
- R. P. Stevenson, R. van Venetië, and J. Westerdiep, A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations, arXiv:2101.03956, 2021.
- Rob Stevenson and Jan Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations, IMA J. Numer. Anal. 41 (2021), no. 1, 28–47. MR 4205051, DOI 10.1093/imanum/drz069
- R. Stevenson and J. Westerdiep, Minimal residual space-time discretizations of parabolic equations: asymmetric spatial operators, arXiv:2106.01090, 2021.
- Joseph Wloka, Partielle Differentialgleichungen, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1982 (German). Sobolevräume und Randwertaufgaben. [Sobolev spaces and boundary value problems]. MR 652934, DOI 10.1007/978-3-322-96662-9
Bibliographic Information
- Wolfgang Dahmen
- Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 54100
- Email: wolfgang.anton.dahmen@googlemail.com
- Rob Stevenson
- Affiliation: Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 310898
- ORCID: 0000-0001-7623-3060
- Email: r.p.stevenson@uva.nl
- Jan Westerdiep
- Affiliation: Korteweg-de Vries (KdV) Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 1356589
- ORCID: 0000-0002-7028-5676
- Email: j.h.westerdiep@uva.nl
- Received by editor(s): November 16, 2020
- Received by editor(s) in revised form: May 12, 2021, and June 21, 2021
- Published electronically: September 24, 2021
- Additional Notes: This research was supported in part by NSF Grants DMS ID 1720297 and DMS ID 2012469, by the SmartState and Williams-Hedberg Foundation, and by the Netherlands Organization for Scientific Research (NWO) under contract. no. 613.001.652
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 557-595
- MSC (2020): Primary 35B35, 35B45, 35K20, 35R25, 65F08, 65J20, 65M12, 65M30, 65M60
- DOI: https://doi.org/10.1090/mcom/3680
- MathSciNet review: 4379969