The perfect groups of order up to two million
HTML articles powered by AMS MathViewer
- by Alexander Hulpke;
- Math. Comp. 91 (2022), 1007-1017
- DOI: https://doi.org/10.1090/mcom/3684
- Published electronically: September 24, 2021
- HTML | PDF | Request permission
Abstract:
We enumerate the $15768$ perfect groups of order up to $2\cdot 10^6$, up to isomorphism, thus also completing the missing cases reported by Holt and Plesken [Perfect groups, The Clarendon Press, Oxford University Press, New York, 1989]. The work supplements the by now well-understood computer classifications of solvable groups, illustrating scope and feasibility of the enumeration process for nonsolvable groups.References
- Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644. MR 1935567, DOI 10.1142/S0218196702001115
- John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing the subgroups of a permutation group, J. Symbolic Comput. 31 (2001), no. 1-2, 149–161. Computational algebra and number theory (Milwaukee, WI, 1996). MR 1806212, DOI 10.1006/jsco.2000.1012
- John J. Cannon and Derek F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), no. 3, 241–267. MR 1962794, DOI 10.1016/S0747-7171(02)00133-5
- John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel, Computing subgroups of bounded index in a finite group, J. Symbolic Comput. 40 (2005), no. 2, 1013–1022. MR 2167681, DOI 10.1016/j.jsc.2005.02.002
- Heiko Dietrich and Alexander Hulpke, Universal covers of finite groups, J. Algebra 569 (2021), 681–712. MR 4187252, DOI 10.1016/j.jalgebra.2020.10.032
- Bettina Eick, Max Horn, and Alexander Hulpke, Constructing groups of ‘small’ order: recent results and open problems, Algorithmic and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017, pp. 199–211. MR 3792726
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11, http://www.gap-system.org, 2020.
- D. F. Holt, Enumerating perfect groups, J. London Math. Soc. (2) 39 (1989), no. 1, 67–78. MR 989920, DOI 10.1112/jlms/s2-39.1.67
- Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2129747, DOI 10.1201/9781420035216
- Derek F. Holt and W. Plesken, Perfect groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. With an appendix by W. Hanrath; Oxford Science Publications. MR 1025760
- Alexander Hulpke, Representing subgroups of finitely presented groups by quotient subgroups, Experiment. Math. 10 (2001), no. 3, 369–381. MR 1917425, DOI 10.1080/10586458.2001.10504457
- Alexander Hulpke, Calculation of the subgroups of a trivial-fitting group, ISSAC 2013—Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2013, pp. 205–210. MR 3206359, DOI 10.1145/2465506.2465525
- Joachim Neubüser, Untersuchungen des Untergruppenverbandes endlicher Gruppen auf einer programmgesteuerten elektronischen Dualmaschine, Numer. Math. 2 (1960), 280–292., DOI 10.1007/BF01386229
- D. J. S. Robinson, Applications of cohomology to the theory of groups, Groups—St. Andrews 1981 (St. Andrews, 1981) London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 46–80. MR 679154
- Jack Schmidt, Finite groups have short rewriting systems, Computational group theory and the theory of groups, II, Contemp. Math., vol. 511, Amer. Math. Soc., Providence, RI, 2010, pp. 185–200. MR 2655300, DOI 10.1090/conm/511/10049
- Charles C. Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications, vol. 48, Cambridge University Press, Cambridge, 1994. MR 1267733, DOI 10.1017/CBO9780511574702
- Michael J. Smith, Computing automorphisms of finite soluble groups, Ph.D. Thesis, Australian National University, 1994.
Bibliographic Information
- Alexander Hulpke
- Affiliation: Department of Mathematics, Colorado State University, 1874 Campus Delivery, Fort Collins, Colorado 80523-1874
- MR Author ID: 600556
- ORCID: 0000-0002-5210-6283
- Email: hulpke@colostate.edu
- Received by editor(s): April 21, 2021
- Received by editor(s) in revised form: June 22, 2021, and July 6, 2021
- Published electronically: September 24, 2021
- Additional Notes: The author’s work was supported in part by NSF Grant DMS-1720146, which is gratefully acknowledged.
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1007-1017
- MSC (2020): Primary 20-08; Secondary 20-04, 20-11, 20E22
- DOI: https://doi.org/10.1090/mcom/3684
- MathSciNet review: 4379985