Convergence analysis of some tent-based schemes for linear hyperbolic systems
HTML articles powered by AMS MathViewer
- by Dow Drake, Jay Gopalakrishnan, Joachim Schöberl and Christoph Wintersteiger;
- Math. Comp. 91 (2022), 699-733
- DOI: https://doi.org/10.1090/mcom/3686
- Published electronically: September 22, 2021
- HTML | PDF | Request permission
Abstract:
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.References
- R. Abedi and R. Haber, Spacetime simulation of dynamic fracture with crack closure and frictional sliding, Adv. Model. Simul. Eng. Sci., 5 (2018).
- R. Abedi, B. Petracovici, and R. B. Haber, A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3247–3273. MR 2220918, DOI 10.1016/j.cma.2005.06.013
- Erik Burman, Alexandre Ern, and Miguel A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019–2042. MR 2740540, DOI 10.1137/090757940
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010. MR 2574377, DOI 10.1007/978-3-642-04048-1
- Bruno Despres, Lax theorem and finite volume schemes, Math. Comp. 73 (2004), no. 247, 1203–1234. MR 2047085, DOI 10.1090/S0025-5718-03-01618-1
- J. Erickson, D. Guoy, J. M. Sullivan, and A. Üngör, Building spacetime meshes over arbitrary spatial domains, Engineering with Computers, 20 (2005), 342–353. 10.1007/s00366-005-0303-0.
- A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory, SIAM J. Numer. Anal. 44 (2006), no. 2, 753–778. MR 2218968, DOI 10.1137/050624133
- Richard S. Falk and Gerard R. Richter, Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (1999), no. 3, 935–952. MR 1688992, DOI 10.1137/S0036142997329463
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306
- Jay Gopalakrishnan, Matthias Hochsteger, Joachim Schöberl, and Christoph Wintersteiger, An explicit mapped tent pitching scheme for Maxwell equations, Spectral and high order methods for partial differential equations—ICOSAHOM 2018, Lect. Notes Comput. Sci. Eng., vol. 134, Springer, Cham, [2020] ©2020, pp. 359–369. MR 4143310, DOI 10.1007/978-3-030-39647-3_{2}8
- J. Gopalakrishnan, J. Schöberl, and C. Wintersteiger, Mapped tent pitching schemes for hyperbolic systems, SIAM J. Sci. Comput. 39 (2017), no. 6, B1043–B1063. MR 3725284, DOI 10.1137/16M1101374
- Jay Gopalakrishnan, Joachim Schöberl, and Christoph Wintersteiger, Structure aware Runge-Kutta time stepping for spacetime tents, Partial Differ. Equ. Appl. 1 (2020), no. 4, Paper No. 19, 24. MR 4292850, DOI 10.1007/s42985-020-00020-4
- Jan S. Hesthaven and Tim Warburton, Nodal discontinuous Galerkin methods, Texts in Applied Mathematics, vol. 54, Springer, New York, 2008. Algorithms, analysis, and applications. MR 2372235, DOI 10.1007/978-0-387-72067-8
- Doron Levy and Eitan Tadmor, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method, SIAM Rev. 40 (1998), no. 1, 40–73. MR 1612565, DOI 10.1137/S0036144597316255
- Peter Monk and Gerard R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Comput. 22/23 (2005), 443–477. MR 2142205, DOI 10.1007/s10915-004-4132-5
- Ilaria Perugia, Joachim Schöberl, Paul Stocker, and Christoph Wintersteiger, Tent pitching and Trefftz-DG method for the acoustic wave equation, Comput. Math. Appl. 79 (2020), no. 10, 2987–3000. MR 4083033, DOI 10.1016/j.camwa.2020.01.006
- Todd E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133–140. MR 1083327, DOI 10.1137/0728006
- Gerard R. Richter, An explicit finite element method for the wave equation, Appl. Numer. Math. 16 (1994), no. 1-2, 65–80. A Festschrift to honor Professor Robert Vichnevetsky on his 65th birthday. MR 1312855, DOI 10.1016/0168-9274(94)00048-4
- Zheng Sun and Chi-Wang Shu, Stability analysis and error estimates of Lax-Wendroff discontinuous Galerkin methods for linear conservation laws, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 3, 1063–1087. MR 3666657, DOI 10.1051/m2an/2016049
- Lin Yin, Amit Acharya, Nahil Sobh, Robert B. Haber, and Daniel A. Tortorelli, A space-time discontinuous Galerkin method for elastodynamic analysis, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 459–464. MR 1842208, DOI 10.1007/978-3-642-59721-3_{4}8
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641–666. MR 2084230, DOI 10.1137/S0036142902404182
Bibliographic Information
- Dow Drake
- Affiliation: Fariborz Maseeh Department of Mathematics & Statistics, Portland State University, PO Box 751, Portland, Oregon 97207
- MR Author ID: 1237024
- ORCID: 0000-0002-0957-8824
- Email: ddrake@pdx.edu
- Jay Gopalakrishnan
- Affiliation: Fariborz Maseeh Department of Mathematics & Statistics, Portland State University, PO Box 751, Portland, Oregon 97207
- MR Author ID: 661361
- ORCID: 0000-0001-7508-3232
- Email: gjay@pdx.edu
- Joachim Schöberl
- Affiliation: Institute of Analysis and Scientific Computing, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
- ORCID: 0000-0002-1250-5087
- Email: joachim.schoeberl@tuwien.ac.at
- Christoph Wintersteiger
- Affiliation: Institute of Analysis and Scientific Computing, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
- MR Author ID: 1241583
- Email: c.wintersteiger@gmx.at
- Received by editor(s): January 13, 2021
- Received by editor(s) in revised form: June 22, 2021
- Published electronically: September 22, 2021
- Additional Notes: This work was supported in part by NSF grant DMS-1912779
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 699-733
- MSC (2020): Primary 65M12; Secondary 35L65
- DOI: https://doi.org/10.1090/mcom/3686
- MathSciNet review: 4379973