New results for witnesses of Robin’s criterion
HTML articles powered by AMS MathViewer
- by Yannick Saouter;
- Math. Comp. 91 (2022), 909-920
- DOI: https://doi.org/10.1090/mcom/3687
- Published electronically: October 15, 2021
- HTML | PDF | Request permission
Abstract:
In a seminal paper, Robin proved that the Riemann hypothesis holds if and only if the inequality $\sigma (n)=\sum _{d|n} d < e^\gamma n \log \log n$ holds for all integers greater than 5040, where $\gamma$ is the Euler-Mascheroni constant. In this article, we prove new results on putative violations of Robin’s criterion.References
- G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187–213 (French, with English summary). MR 774171
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé, On Robin’s criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), no. 2, 357–372 (English, with English and French summaries). MR 2394891, DOI 10.5802/jtnb.591
- William D. Banks, Derrick N. Hart, Pieter Moree, and C. Wesley Nevans, The Nicolas and Robin inequalities with sums of two squares, Monatsh. Math. 157 (2009), no. 4, 303–322. MR 2520684, DOI 10.1007/s00605-008-0022-x
- Patrick Solé and Michel Planat, The Robin inequality for 7-free integers, Integers 12 (2012), no. 2, 301–309. MR 2955682, DOI 10.1515/integ.2011.103
- Kevin A. Broughan and Tim Trudgian, Robin’s inequality for 11-free integers, Integers 15 (2015), Paper No. A12, 5. MR 3335389
- Thomas Morrill and David John Platt, Robin’s inequality for 20-free integers, Integers 21 (2021), Paper No. A28, 7. MR 4234497
- Keith Briggs, Abundant numbers and the Riemann hypothesis, Experiment. Math. 15 (2006), no. 2, 251–256. MR 2253548, DOI 10.1080/10586458.2006.10128957
- Pierre Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), no. 1, 227–251. MR 3745073, DOI 10.1007/s11139-016-9839-4
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing $\pi (x)$: the Meissel-Lehmer method, Math. Comp. 44 (1985), no. 170, 537–560. MR 777285, DOI 10.1090/S0025-5718-1985-0777285-5
- Eric Bach, Dominic Klyve, and Jonathan P. Sorenson, Computing prime harmonic sums, Math. Comp. 78 (2009), no. 268, 2283–2305. MR 2521290, DOI 10.1090/S0025-5718-09-02249-2
- Nathalie Revol and Fabrice Rouillier, Motivations for an arbitrary precision interval arithmetic and the MPFI library, Reliab. Comput. 11 (2005), no. 4, 275–290. MR 2158338, DOI 10.1007/s11155-005-6891-y
- A. O. L. Atkin and D. J. Bernstein, Prime sieves using binary quadratic forms, Math. Comp. 73 (2004), no. 246, 1023–1030. MR 2031423, DOI 10.1090/S0025-5718-03-01501-1
- Srinivasa Ramanujan, Highly composite numbers, Ramanujan J. 1 (1997), no. 2, 119–153. Annotated and with a foreword by Jean-Louis Nicolas and Guy Robin. MR 1606180, DOI 10.1023/A:1009764017495
- Jan Büthe, Estimating $\pi (x)$ and related functions under partial RH assumptions, Math. Comp. 85 (2016), no. 301, 2483–2498. MR 3511289, DOI 10.1090/mcom/3060
- Dave Platt and Tim Trudgian, The Riemann hypothesis is true up to $3\cdot 10^{12}$, Bull. Lond. Math. Soc. 53 (2021), no. 3, 792–797. MR 4275089, DOI 10.1112/blms.12460
- Habiba Kadiri, Allysa Lumley, and Nathan Ng, Explicit zero density for the Riemann zeta function, J. Math. Anal. Appl. 465 (2018), no. 1, 22–46. MR 3806689, DOI 10.1016/j.jmaa.2018.04.071
Bibliographic Information
- Yannick Saouter
- Affiliation: Institut Mines Telecom, Bretagne, 655 av. du Technopôle, 29280 Plouzané, France
- MR Author ID: 306740
- Email: Yannick.Saouter@imt-atlantique.fr
- Received by editor(s): September 25, 2019
- Received by editor(s) in revised form: August 3, 2020, October 15, 2020, and July 8, 2021
- Published electronically: October 15, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 909-920
- MSC (2020): Primary 11-04, 11M26, 11Y11, 11Y35
- DOI: https://doi.org/10.1090/mcom/3687
- MathSciNet review: 4379981