Superconvergence of time invariants for the Gross–Pitaevskii equation
HTML articles powered by AMS MathViewer
- by Patrick Henning and Johan Wärnegård;
- Math. Comp. 91 (2022), 509-555
- DOI: https://doi.org/10.1090/mcom/3693
- Published electronically: October 15, 2021
- HTML | PDF | Request permission
Abstract:
This paper considers the numerical treatment of the time-dependent Gross–Pitaevskii equation. In order to conserve the time invariants of the equation as accurately as possible, we propose a Crank–Nicolson-type time discretization that is combined with a suitable generalized finite element discretization in space. The space discretization is based on the technique of Localized Orthogonal Decompositions and allows to capture the time invariants with an accuracy of order $\mathcal {O}(H^6)$ with respect to the chosen mesh size $H$. This accuracy is preserved due to the conservation properties of the time stepping method. Furthermore, we prove that the resulting scheme approximates the exact solution in the $L^{\infty }(L^2)$-norm with order $\mathcal {O}(\tau ^2 + H^4)$, where $\tau$ denotes the step size. The computational efficiency of the method is demonstrated in numerical experiments for a benchmark problem with known exact solution.References
- Assyr Abdulle and Patrick Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales, Math. Comp. 86 (2017), no. 304, 549–587. MR 3584540, DOI 10.1090/mcom/3114
- P. L. Christiansen, M. P. Sørensen, and A. C. Scott (eds.), Nonlinear science at the dawn of the 21st century, Lecture Notes in Physics, vol. 542, Springer-Verlag, Berlin, 2000. MR 1767774, DOI 10.1007/3-540-46629-0
- Georgios D. Akrivis, Vassilios A. Dougalis, and Ohannes A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), no. 1, 31–53. MR 1103752, DOI 10.1007/BF01385769
- Tuncay Aktosun, Theresa Busse, Francesco Demontis, and Cornelis van der Mee, Exact solutions to the nonlinear Schrödinger equation, Topics in operator theory. Volume 2. Systems and mathematical physics, Oper. Theory Adv. Appl., vol. 203, Birkhäuser Verlag, Basel, 2010, pp. 1–12. MR 2683234, DOI 10.1007/978-3-0346-0161-0_{1}
- Xavier Antoine, Weizhu Bao, and Christophe Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun. 184 (2013), no. 12, 2621–2633. MR 3128901, DOI 10.1016/j.cpc.2013.07.012
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- Weizhu Bao and Yongyong Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2012), no. 2, 492–521. MR 2914273, DOI 10.1137/110830800
- Weizhu Bao and Yongyong Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models 6 (2013), no. 1, 1–135. MR 3005624, DOI 10.3934/krm.2013.6.1
- Weizhu Bao and Yongyong Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp. 82 (2013), no. 281, 99–128. MR 2983017, DOI 10.1090/S0025-5718-2012-02617-2
- Weizhu Bao, Shi Jin, and Peter A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput. 25 (2003), no. 1, 27–64. MR 2047194, DOI 10.1137/S1064827501393253
- Christophe Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 42 (2004), no. 3, 934–952. MR 2112787, DOI 10.1137/S0036142901396521
- Christophe Besse, Stéphane Descombes, Guillaume Dujardin, and Ingrid Lacroix-Violet, Energy-preserving methods for nonlinear Schrödinger equations, IMA J. Numer. Anal. 41 (2021), no. 1, 618–653. MR 4205067, DOI 10.1093/imanum/drz067
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Felix E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, RI, 1965, pp. 24–49. MR 197933
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Jin Cui, Wenjun Cai, and Yushun Wang, A linearly-implicit and conservative Fourier pseudo-spectral method for the 3D Gross-Pitaevskii equation with angular momentum rotation, Comput. Phys. Commun. 253 (2020), 107160, 26. MR 4105636, DOI 10.1016/j.cpc.2020.107160
- Christian Engwer, Patrick Henning, Axel Målqvist, and Daniel Peterseim, Efficient implementation of the localized orthogonal decomposition method, Comput. Methods Appl. Mech. Engrg. 350 (2019), 123–153. MR 3926249, DOI 10.1016/j.cma.2019.02.040
- D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg. 295 (2015), 1–17. MR 3388822, DOI 10.1016/j.cma.2015.06.017
- Dietmar Gallistl, Patrick Henning, and Barbara Verfürth, Numerical homogenization of ${\bf {H}}(\rm curl)$-problems, SIAM J. Numer. Anal. 56 (2018), no. 3, 1570–1596. MR 3810505, DOI 10.1137/17M1133932
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento (10) 20 (1961), 454–477 (English, with Italian summary). MR 128907, DOI 10.1007/BF02731494
- H. Hasimoto and H. Ono, Nonlinear modulation of gravity waves, J. Phys. Soc. Japan 33 (1972), no. 3, 805–811.
- Fredrik Hellman, Patrick Henning, and Axel Målqvist, Multiscale mixed finite elements, Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 5, 1269–1298. MR 3591945, DOI 10.3934/dcdss.2016051
- Patrick Henning and Axel Målqvist, Localized orthogonal decomposition techniques for boundary value problems, SIAM J. Sci. Comput. 36 (2014), no. 4, A1609–A1634. MR 3240855, DOI 10.1137/130933198
- Patrick Henning and Axel Målqvist, The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal. 55 (2017), no. 2, 923–952. MR 3635461, DOI 10.1137/15M1009172
- Patrick Henning, Axel Målqvist, and Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 5, 1331–1349. MR 3264356, DOI 10.1051/m2an/2013141
- Patrick Henning, Axel Målqvist, and Daniel Peterseim, Two-level discretization techniques for ground state computations of Bose-Einstein condensates, SIAM J. Numer. Anal. 52 (2014), no. 4, 1525–1550. MR 3227466, DOI 10.1137/130921520
- Patrick Henning and Anna Persson, A multiscale method for linear elasticity reducing Poisson locking, Comput. Methods Appl. Mech. Engrg. 310 (2016), 156–171. MR 3548556, DOI 10.1016/j.cma.2016.06.034
- Patrick Henning and Anna Persson, Computational homogenization of time-harmonic Maxwell’s equations, SIAM J. Sci. Comput. 42 (2020), no. 3, B581–B607. MR 4096127, DOI 10.1137/19M1293818
- Patrick Henning and Daniel Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul. 11 (2013), no. 4, 1149–1175. MR 3123820, DOI 10.1137/120900332
- Patrick Henning and Daniel Peterseim, Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci. 27 (2017), no. 11, 2147–2184. MR 3691815, DOI 10.1142/S0218202517500415
- Patrick Henning and Johan Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation, Kinet. Relat. Models 12 (2019), no. 6, 1247–1271. MR 4027085, DOI 10.3934/krm.2019048
- Patrick Henning and Johan Wärnegård, A note on optimal $H^1$-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation, BIT 61 (2021), no. 1, 37–59. MR 4235300, DOI 10.1007/s10543-020-00814-3
- Ohannes Karakashian and Charalambos Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999), no. 6, 1779–1807. MR 1712169, DOI 10.1137/S0036142997330111
- Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys. 224 (2001), no. 1, 17–31. Dedicated to Joel L. Lebowitz. MR 1868990, DOI 10.1007/s002200100533
- Christian Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), no. 264, 2141–2153. MR 2429878, DOI 10.1090/S0025-5718-08-02101-7
- Roland Maier, A high-order approach to elliptic multiscale problems with general unstructured coefficients, SIAM J. Numer. Anal. 59 (2021), no. 2, 1067–1089. MR 4246089, DOI 10.1137/20M1364321
- Roland Maier and Daniel Peterseim, Explicit computational wave propagation in micro-heterogeneous media, BIT 59 (2019), no. 2, 443–462. MR 3974048, DOI 10.1007/s10543-018-0735-8
- Axel Målqvist and Anna Persson, A generalized finite element method for linear thermoelasticity, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1145–1171. MR 3702408, DOI 10.1051/m2an/2016054
- Axel Målqvist and Anna Persson, Multiscale techniques for parabolic equations, Numer. Math. 138 (2018), no. 1, 191–217. MR 3745014, DOI 10.1007/s00211-017-0905-7
- A. Målqvist and D. Peterseim, Numerical homogenization by localized orthogonal decomposition, SIAM Spotlights, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, [2021] ©2021. MR 4191211
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- Axel Målqvist and Daniel Peterseim, Computation of eigenvalues by numerical upscaling, Numer. Math. 130 (2015), no. 2, 337–361. MR 3343928, DOI 10.1007/s00211-014-0665-6
- Axel Målqvist and Daniel Peterseim, Generalized finite element methods for quadratic eigenvalue problems, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 1, 147–163. MR 3601004, DOI 10.1051/m2an/2016019
- M. Ohlberger and B. Verfürth, Localized orthogonal decomposition for two-scale Helmholtz-type problems, AIMS Math. 2 (2017), no. 3, 458–478.
- Daniel Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors, Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, Springer, [Cham], 2016, pp. 341–367. MR 3616023
- Daniel Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp. 86 (2017), no. 305, 1005–1036. MR 3614010, DOI 10.1090/mcom/3156
- Daniel Peterseim and Mira Schedensack, Relaxing the CFL condition for the wave equation on adaptive meshes, J. Sci. Comput. 72 (2017), no. 3, 1196–1213. MR 3687898, DOI 10.1007/s10915-017-0394-y
- L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP-USSR (1961), no. 13.
- Lev Pitaevskii and Sandro Stringari, Bose-Einstein condensation, International Series of Monographs on Physics, vol. 116, The Clarendon Press, Oxford University Press, Oxford, 2003. MR 2012737
- J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp. 43 (1984), no. 167, 21–27. MR 744922, DOI 10.1090/S0025-5718-1984-0744922-X
- J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28 (1988), no. 4, 877–883. MR 972812, DOI 10.1007/BF01954907
- J. M. Sanz-Serna and J. G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal. 6 (1986), no. 1, 25–42. MR 967679, DOI 10.1093/imanum/6.1.25
- Mechthild Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal. 50 (2012), no. 6, 3231–3258. MR 3022261, DOI 10.1137/120866373
- Yves Tourigny, Optimal $H^1$ estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation, IMA J. Numer. Anal. 11 (1991), no. 4, 509–523. MR 1135202, DOI 10.1093/imanum/11.4.509
- B. Verfürth, Numerical homogenization for indefinite H(curl)-problems, Proceedings of Equadiff 2017 conference (J. Urban K. Mikula, D. Sevcovic, ed.), 2017, pp. 137–146.
- J. G. Verwer and J. M. Sanz-Serna, Convergence of method of lines approximations to partial differential equations, Computing 33 (1984), no. 3-4, 297–313. MR 773930, DOI 10.1007/BF02242274
- Jilu Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014), no. 2, 390–407. MR 3225788, DOI 10.1007/s10915-013-9799-4
- Jingrun Chen, Dingjiong Ma, and Zhiwen Zhang, A multiscale finite element method for the Schrödinger equation with multiscale potentials, SIAM J. Sci. Comput. 41 (2019), no. 5, B1115–B1136. MR 4018418, DOI 10.1137/19M1236989
- H. C. Yuen and B. M. Lake, Instabilities of waves on deep water, Ann. Rev. Fluid Mech. 12 (1980), no. 1, 303–334.
- V. Zakharov, Stability of periodic waves of finite amplitude on a surface of deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968), 190–194.
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 406174
- Georgios E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation, M2AN Math. Model. Numer. Anal. 35 (2001), no. 3, 389–405. MR 1837077, DOI 10.1051/m2an:2001121
- G. E. Zouraris, Error estimation of the relaxation finite difference scheme for the nonlinear Schrödinger equation, arXiv:2002.09605, 2020.
Bibliographic Information
- Patrick Henning
- Affiliation: Department of Mathematics, Ruhr-University Bochum, DE-44801 Bochum, Germany
- MR Author ID: 881716
- ORCID: 0000-0002-6432-5504
- Email: patrick.henning@rub.de
- Johan Wärnegård
- Affiliation: Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Email: jwar@kth.se
- Received by editor(s): September 10, 2020
- Received by editor(s) in revised form: June 1, 2021
- Published electronically: October 15, 2021
- Additional Notes: The authors were supported by the Swedish Research Council (grant 2016-03339) and the Göran Gustafsson foundation
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 509-555
- MSC (2020): Primary 35Q55, 65M60, 65M15, 81Q05
- DOI: https://doi.org/10.1090/mcom/3693
- MathSciNet review: 4379968