Enumeration of set-theoretic solutions to the Yang–Baxter equation
HTML articles powered by AMS MathViewer
- by Ö. Akgün, M. Mereb and L. Vendramin HTML | PDF
- Math. Comp. 91 (2022), 1469-1481 Request permission
Abstract:
We use Constraint Satisfaction methods to enumerate and construct set-theoretic solutions to the Yang–Baxter equation of small size. We show that there are 321,931 involutive solutions of size nine, 4,895,272 involutive solutions of size ten and 422,449,480 non-involutive solution of size eight. Our method is then used to enumerate non-involutive biquandles.References
- E. Acri, R. Lutowski, and L. Vendramin, Retractability of solutions to the Yang-Baxter equation and $p$-nilpotency of skew braces, Internat. J. Algebra Comput. 30 (2020), no. 1, 91–115. MR 4062375, DOI 10.1142/S0218196719500656
- Matthew Ashford and Oliver Riordan, Counting racks of order $n$, Electron. J. Combin. 24 (2017), no. 2, Paper No. 2.32, 20. MR 3665565, DOI 10.37236/6330
- David Bachiller, Ferran Cedó, Eric Jespers, and Jan Okniński, A family of irretractable square-free solutions of the Yang-Baxter equation, Forum Math. 29 (2017), no. 6, 1291–1306. MR 3719300, DOI 10.1515/forum-2015-0240
- Andrew Bartholomew and Roger Fenn, Biquandles of small size and some invariants of virtual and welded knots, J. Knot Theory Ramifications 20 (2011), no. 7, 943–954. MR 2819176, DOI 10.1142/S0218216511009042
- Rodney J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193–228. MR 290733, DOI 10.1016/0003-4916(72)90335-1
- Simon R. Blackburn, Enumerating finite racks, quandles and kei, Electron. J. Combin. 20 (2013), no. 3, Paper 43, 9. MR 3118951
- Marco Castelli, Francesco Catino, and Giuseppina Pinto, About a question of Gateva-Ivanova and Cameron on square-free set-theoretic solutions of the Yang-Baxter equation, Comm. Algebra 48 (2020), no. 6, 2369–2381. MR 4107577, DOI 10.1080/00927872.2020.1713328
- Ferran Cedó, Eric Jespers, and Jan Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math. 224 (2010), no. 6, 2472–2484. MR 2652212, DOI 10.1016/j.aim.2010.02.001
- Lindsay N. Childs, Bi-skew braces and Hopf Galois structures, New York J. Math. 25 (2019), 574–588. MR 3982254
- K. De Commer, Actions of skew braces and set-theoretic solutions of the reflection equation, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 4, 1089–1113. MR 4017867, DOI 10.1017/s0013091519000129
- A. Distler, C. A. Jefferson, T. Kelsey, and L. Kotthoff, The Semigroups of Order 10, In 18th International Conference on Principles and Practice of Constraint Programming, Oct. 2012, pp. 883–899.
- V. G. Drinfel′d, On some unsolved problems in quantum group theory, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 1–8. MR 1183474, DOI 10.1007/BFb0101175
- Pavel Etingof, Travis Schedler, and Alexandre Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), no. 2, 169–209. MR 1722951, DOI 10.1215/S0012-7094-99-10007-X
- Roger Andrew Fenn and Andrew Bartholomew, Erratum: Biquandles of small size and some invariants of virtual and welded knots [ MR2819176], J. Knot Theory Ramifications 26 (2017), no. 8, 1792002, 11. MR 3666513, DOI 10.1142/S021821651792002X
- Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian Miguel, ESSENCE: a constraint language for specifying combinatorial problems, Constraints 13 (2008), no. 3, 268–306. MR 2420790, DOI 10.1007/s10601-008-9047-y
- The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.
- Tatiana Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys. 45 (2004), no. 10, 3828–3858. MR 2095675, DOI 10.1063/1.1788848
- Tatiana Gateva-Ivanova, Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity, Adv. Math. 230 (2012), no. 4-6, 2152–2175. MR 2927367, DOI 10.1016/j.aim.2012.04.016
- Tatiana Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math. 338 (2018), 649–701. MR 3861714, DOI 10.1016/j.aim.2018.09.005
- Tatiana Gateva-Ivanova and Peter Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys. 309 (2012), no. 3, 583–621. MR 2885602, DOI 10.1007/s00220-011-1394-7
- Tatiana Gateva-Ivanova and Michel Van den Bergh, Semigroups of $I$-type, J. Algebra 206 (1998), no. 1, 97–112. MR 1637256, DOI 10.1006/jabr.1997.7399
- I. P. Gent, C. Jefferson, and I. Miguel, Minion: A fast, scalable, constraint solver, In Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelligence August 29 – September 1, 2006, Riva Del Garda, Italy, NLD. IOS Press, 2006, pp. 98–102.
- Jim Hoste and Patrick D. Shanahan, An enumeration process for racks, Math. Comp. 88 (2019), no. 317, 1427–1448. MR 3904151, DOI 10.1090/mcom/3374
- C. Jefferson and K. E. Petrie, Automatic generation of constraints for partial symmetry breaking, In J. Lee, editor, Principles and Practice of Constraint Programming – CP 2011, Springer, Berlin, Heidelberg, 2011, 729–743.
- Victoria Lebed and Leandro Vendramin, Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Adv. Math. 304 (2017), 1219–1261. MR 3558231, DOI 10.1016/j.aim.2016.09.024
- Victoria Lebed and Leandro Vendramin, On structure groups of set-theoretic solutions to the Yang-Baxter equation, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 3, 683–717. MR 3974961, DOI 10.1017/s0013091518000548
- Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 (2000), no. 1, 1–18. MR 1769723, DOI 10.1215/S0012-7094-00-10411-5
- I. McDonald and B. Smith, Partial symmetry breaking, In International Conference on Principles and Practice of Constraint Programming, Springer, 2002, 431–445.
- H. Meng, A. Ballester-Bolinches, and R. Esteban-Romero, Left braces and the quantum Yang-Baxter equation, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 2, 595–608. MR 3935814, DOI 10.1017/s0013091518000664
- Sam Nelson and John Vo, Matrices and finite biquandles, Homology Homotopy Appl. 8 (2006), no. 2, 51–73. MR 2246021, DOI 10.4310/HHA.2006.v8.n2.a3
- Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick Spracklen, Automatically improving constraint models in Savile Row, Artificial Intelligence 251 (2017), 35–61. MR 3689757, DOI 10.1016/j.artint.2017.07.001
- Robert Plemmons, Construction and analysis of non-equivalent finite semigroups, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 223–228. MR 0258994
- Wolfgang Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), no. 1, 40–55. MR 2132760, DOI 10.1016/j.aim.2004.03.019
- Wolfgang Rump, The brace of a classical group, Note Mat. 34 (2014), no. 1, 115–144. MR 3291816
- Wolfgang Rump, A covering theory for non-involutive set-theoretic solutions to the Yang-Baxter equation, J. Algebra 520 (2019), 136–170. MR 3881192, DOI 10.1016/j.jalgebra.2018.11.007
- Agata Smoktunowicz and Leandro Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2 (2018), no. 1, 47–86. MR 3763907, DOI 10.4171/JCA/2-1-3
- Alexander Soloviev, Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation, Math. Res. Lett. 7 (2000), no. 5-6, 577–596. MR 1809284, DOI 10.4310/MRL.2000.v7.n5.a4
- Mitsuhiro Takeuchi, Survey on matched pairs of groups—an elementary approach to the ESS-LYZ theory, Noncommutative geometry and quantum groups (Warsaw, 2001) Banach Center Publ., vol. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 305–331. MR 2024436, DOI 10.4064/bc61-0-19
- L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220 (2016), no. 5, 2064–2076. MR 3437282, DOI 10.1016/j.jpaa.2015.10.018
- Petr Vojtěchovský and Seung Yeop Yang, Enumeration of racks and quandles up to isomorphism, Math. Comp. 88 (2019), no. 319, 2523–2540. MR 3957904, DOI 10.1090/mcom/3409
- C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315. MR 261870, DOI 10.1103/PhysRevLett.19.1312
Additional Information
- Ö. Akgün
- Affiliation: School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, United Kingdom
- ORCID: 0000-0001-9519-938X
- Email: ozgur.akgun@st-andrews.ac.uk
- M. Mereb
- Affiliation: IMAS–CONICET and Depto. de Matemática, FCEN, Universidad de Buenos Aires, Pab. 1, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
- MR Author ID: 870581
- Email: mmereb@dm.uba.ar
- L. Vendramin
- Affiliation: IMAS–CONICET and Depto. de Matemática, FCEN, Universidad de Buenos Aires, Pab. 1, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; and Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- MR Author ID: 829575
- ORCID: 0000-0003-0954-7785
- Email: lvendramin@dm.uba.ar, leandro.vendramin@vub.be
- Received by editor(s): September 14, 2020
- Received by editor(s) in revised form: June 7, 2021, and August 11, 2021
- Published electronically: January 14, 2022
- Additional Notes: The second author was partially supported by PICT 2018-3511 and is also a Junior Associate of the ICTP. The third author was supported by NYU-ECNU Institute of Mathematical Sciences at NYU–Shanghai and was supported in part by PICT 2016-2481 and UBACyT 20020170100256BA
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1469-1481
- MSC (2020): Primary 16T25; Secondary 81R50
- DOI: https://doi.org/10.1090/mcom/3696
- MathSciNet review: 4405502