On symmetric-conjugate composition methods in the numerical integration of differential equations
HTML articles powered by AMS MathViewer
- by S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomàs;
- Math. Comp. 91 (2022), 1739-1761
- DOI: https://doi.org/10.1090/mcom/3715
- Published electronically: December 22, 2021
- HTML | PDF | Request permission
Abstract:
We analyze composition methods with complex coefficients exhibiting the so-called “symmetry-conjugate” pattern in their distribution. In particular, we study their behavior with respect to preservation of qualitative properties when projected on the real axis and we compare them with the usual left-right palindromic compositions. New schemes within this family up to order 8 are proposed and their efficiency is tested on several examples. Our analysis shows that higher-order schemes are more efficient even when time step sizes are relatively large.References
- V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295, DOI 10.1007/978-1-4757-2063-1
- A. Aubry and P. Chartier, Pseudo-symplectic Runge-Kutta methods, BIT 38 (1998), no. 3, 439–461. MR 1652824, DOI 10.1007/BF02510253
- A. Bandrauk, E. Dehghanian, and H. Lu, Complex integration steps in decomposition of quantum exponential evolution operators, Chem. Phys. Lett. 419 (2006), pp. 346–350.
- Sergio Blanes and Fernando Casas, On the necessity of negative coefficients for operator splitting schemes of order higher than two, Appl. Numer. Math. 54 (2005), no. 1, 23–37. MR 2134093, DOI 10.1016/j.apnum.2004.10.005
- Sergio Blanes and Fernando Casas, A concise introduction to geometric numerical integration, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. MR 3642447
- S. Blanes, F. Casas, P. Chartier, and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comp. 82 (2013), no. 283, 1559–1576. MR 3042575, DOI 10.1090/S0025-5718-2012-02657-3
- S. Blanes, F. Casas, and A. Escorihuela-Tomàs, Applying splitting methods with complex coefficients to the numerical integration of unitary problems, arXiv:2104.02412, 2021 (to appear in J. Comput. Dyn.).
- Sergio Blanes, Fernando Casas, and Ander Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA 45 (2008), 89–145. MR 2477860
- Sergio Blanes, Fernando Casas, and Ander Murua, Splitting methods with complex coefficients, Bol. Soc. Esp. Mat. Apl. SeMA 50 (2010), 47–60. MR 2664321, DOI 10.1007/bf03322541
- S. Blanes, F. Casas, and J. Ros, Extrapolation of symplectic integrators, Celestial Mech. Dynam. Astronom. 75 (1999), no. 2, 149–161. MR 1750213, DOI 10.1023/A:1008364504014
- Fernando Casas, Philippe Chartier, Alejandro Escorihuela-Tomàs, and Yong Zhang, Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, J. Comput. Appl. Math. 381 (2021), Paper No. 113006, 14. MR 4105675, DOI 10.1016/j.cam.2020.113006
- F. Castella, P. Chartier, S. Descombes, and G. Vilmart, Splitting methods with complex times for parabolic equations, BIT 49 (2009), no. 3, 487–508. MR 2545817, DOI 10.1007/s10543-009-0235-y
- J. Chambers, Symplectic integrators with complex time steps, Astron. J. 126 (2003), 1119–1126.
- F. Goth, Higher order auxiliary field Monte Carlo methods, arXiv:2009.04491, 2020.
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- Eskil Hansen and Alexander Ostermann, High order splitting methods for analytic semigroups exist, BIT 49 (2009), no. 3, 527–542. MR 2545819, DOI 10.1007/s10543-009-0236-x
- Robert I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput. 16 (1995), no. 1, 151–168. MR 1311683, DOI 10.1137/0916010
- Robert I. McLachlan, Families of high-order composition methods, Numer. Algorithms 31 (2002), no. 1-4, 233–246. Numerical methods for ordinary differential equations (Auckland, 2001). MR 1950923, DOI 10.1023/A:1021195019574
- Robert I. McLachlan and G. Reinout W. Quispel, Splitting methods, Acta Numer. 11 (2002), 341–434. MR 2009376, DOI 10.1017/S0962492902000053
- Hans Munthe-Kaas and Brynjulf Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 957–981. MR 1694699, DOI 10.1098/rsta.1999.0361
- J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian problems, Applied Mathematics and Mathematical Computation, vol. 7, Chapman & Hall, London, 1994. MR 1270017, DOI 10.1007/978-1-4899-3093-4
- Haruo Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990), no. 5-7, 262–268. MR 1078768, DOI 10.1016/0375-9601(90)90092-3
Bibliographic Information
- S. Blanes
- Affiliation: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, 46022-Valencia, Spain
- MR Author ID: 633218
- ORCID: 0000-0001-5819-8898
- Email: serblaza@imm.upv.es
- F. Casas
- Affiliation: Departament de Matemàtiques and IMAC, Universitat Jaume I, E-12071 Castellón, Spain
- MR Author ID: 314104
- ORCID: 0000-0002-6445-279X
- Email: Fernando.Casas@uji.es
- P. Chartier
- Affiliation: Université de Rennes, INRIA, CNRS, IRMAR, F-35000 Rennes, France
- MR Author ID: 335517
- Email: Philippe.Chartier@inria.fr
- A. Escorihuela-Tomàs
- Affiliation: Departament de Matemàtiques and IMAC, Universitat Jaume I, E-12071 Castellón, Spain
- ORCID: 0000-0003-4409-3272
- Email: alescori@uji.es
- Received by editor(s): December 31, 2020
- Received by editor(s) in revised form: July 26, 2021, and October 20, 2021
- Published electronically: December 22, 2021
- Additional Notes: This work was supported by EPSRC Grant Number EP/R014604/1 and by Ministerio de Ciencia e Innovación (Spain) through project PID2019-104927GB-C21/AEI/10.13039/501100011033. The fourth author was additionally supported by the predoctoral contract BES-2017-079697 (Spain)
- © Copyright 2021 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1739-1761
- MSC (2020): Primary 65L05, 65P10, 37M15
- DOI: https://doi.org/10.1090/mcom/3715
- MathSciNet review: 4435946