Abel maps for nodal curves via tropical geometry
HTML articles powered by AMS MathViewer
- by Alex Abreu, Sally Andria and Marco Pacini;
- Math. Comp. 91 (2022), 1971-2025
- DOI: https://doi.org/10.1090/mcom/3717
- Published electronically: January 11, 2022
- HTML | PDF | Request permission
Abstract:
We consider Abel maps for regular smoothing of nodal curves with values in the Esteves compactified Jacobian. In general, these maps are just rational, and an interesting question is to find an explicit resolution. We translate this problem into an explicit combinatorial problem by means of tropical and toric geometry. We show that the solution of the combinatorial problem gives rise to an explicit resolution of the Abel map. We are able to use this technique to construct and study all the Abel maps of degree one. Finally, we write an algorithm, which we implemented in SageMath to compute explicitly the solution of the combinatorial problem which, provided the existence of certain subdivisions of a hypercube, give rise to the resolution of the geometric Abel map.References
- Alex Abreu, Sally Andria, and Marco Pacini, Abel maps for nodal curves via tropical geometry - code, https://github.com/alexbra1/Abel-maps-for-nodal-curves-via-tropical-geometry/blob/main/Code.
- Alex Abreu, Sally Andria, Marco Pacini, and Danny Taboada, A universal tropical Jacobian over $M_g^{\mathrm {trop}}$, 2019, arXiv:1912.08675.
- Alex Abreu, Juliana Coelho, and Marco Pacini, On the geometry of Abel maps for nodal curves, Michigan Math. J. 64 (2015), no. 1, 77–108. MR 3326581, DOI 10.1307/mmj/1427203286
- Alex Abreu and Marco Pacini, The universal tropical Jacobian and the skeleton of the Esteves’ universal Jacobian, Proc. Lond. Math. Soc. (3) 120 (2020), no. 3, 328–369. MR 4008373, DOI 10.1112/plms.12298
- Alex Abreu and Marco Pacini, The resolution of the universal Abel map via tropical geometry and applications, Adv. Math. 378 (2021), Paper No. 107520, 62. MR 4184297, DOI 10.1016/j.aim.2020.107520
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- Matthew Baker and Xander Faber, Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin. 33 (2011), no. 3, 349–381. MR 2772537, DOI 10.1007/s10801-010-0247-3
- Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), no. 3, 589–660. MR 1254134, DOI 10.1090/S0894-0347-1994-1254134-8
- Lucia Caporaso, Juliana Coelho, and Eduardo Esteves, Abel maps of Gorenstein curves, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 1, 33–59. MR 2420522, DOI 10.1007/s12215-008-0002-y
- Lucia Caporaso and Eduardo Esteves, On Abel maps of stable curves, Michigan Math. J. 55 (2007), no. 3, 575–607. MR 2372617, DOI 10.1307/mmj/1197056458
- Karl Christ, Sam Payne, and Tif Shen, Compactified Jacobians as Mumford models, 2019, arXiv:1912.03653.
- J. Coelho, E. Esteves, and M. Pacini, Degree-2 Abel maps for nodal curves, Int. Math. Res. Not. IMRN 10 (2016), 2912–2973. MR 3551826, DOI 10.1093/imrn/rnv217
- Juliana Coelho and Marco Pacini, Abel maps for curves of compact type, J. Pure Appl. Algebra 214 (2010), no. 8, 1319–1333. MR 2593665, DOI 10.1016/j.jpaa.2009.10.014
- Aldi Nestor de Souza and Frederico Sercio, On the degree-1 Abel map for nodal curves, Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 3, 717–743. MR 3993191, DOI 10.1007/s00574-018-00127-8
- Israel Díaz, Resolucão local do mapa de abel para curvas circulares e com duas componentes, Ph.D. thesis, Universidade Federal Fluminense, 2019.
- Eduardo Esteves, Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3045–3095. MR 1828599, DOI 10.1090/S0002-9947-01-02746-5
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- D. Gieseker, Stable curves and special divisors: Petri’s conjecture, Invent. Math. 66 (1982), no. 2, 251–275. MR 656623, DOI 10.1007/BF01389394
- Phillip Griffiths and Joseph Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR 563378
- Steven L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 235–321. MR 2223410
- Margarida Melo, Compactifications of the universal Jacobian over curves with marked points, 2015, arXiv:1509.06177.
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- B. Riemann, Theorie der Abel’schen Functionen, J. Reine Angew. Math. 54 (1857), 115–155 (German). MR 1579035, DOI 10.1515/crll.1857.54.115
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2), 2020, https://www.sagemath.org.
Bibliographic Information
- Alex Abreu
- Affiliation: Rua Prof. M. de Freitas, Instituto de Matemática, Rio de Janeiro, Brazil
- MR Author ID: 1270337
- Email: alexbra1@gmail.com
- Sally Andria
- Affiliation: Rua Prof. M. de Freitas, Instituto de Matemática, Rio de Janeiro, Brazil
- ORCID: 0000-0003-3289-4099
- Email: sally.andrya@gmail.com
- Marco Pacini
- Affiliation: Rua Prof. M. de Freitas, Instituto de Matemática, Rio de Janeiro, Brazil
- MR Author ID: 782652
- Email: pacini.uff@gmail.com
- Received by editor(s): February 25, 2021
- Received by editor(s) in revised form: October 22, 2021
- Published electronically: January 11, 2022
- Additional Notes: The second author was supported by Capes (Bolsa de doutorado). The third author was supported by CNPq-PQ 2019, processo 301671/2019-2.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1971-2025
- MSC (2020): Primary 14H10, 14H40, 14T90
- DOI: https://doi.org/10.1090/mcom/3717
- MathSciNet review: 4435954