Explicit interval estimates for prime numbers
HTML articles powered by AMS MathViewer
- by Michaela Cully-Hugill and Ethan S. Lee;
- Math. Comp. 91 (2022), 1955-1970
- DOI: https://doi.org/10.1090/mcom/3719
- Published electronically: January 25, 2022
- HTML | PDF | Request permission
Abstract:
Using a smoothing function and recent knowledge on the zeros of the Riemann zeta-function, we compute pairs of $(\Delta ,x_0)$ such that for all $x \geq x_0$ there exists at least one prime in the interval $(x(1-\Delta ^{-1}),x]$.References
- Christian Axler, New estimates for some functions defined over primes, Integers 18 (2018), Paper No. A52, 21. MR 3813836
- R. J. Backlund, Über die Nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1916), no. 1, 345–375 (German). MR 1555156, DOI 10.1007/BF02422950
- R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532–562. MR 1851081, DOI 10.1112/plms/83.3.532
- J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu’elle renferme, J. l’École Roy. Poly. 18 (1845), 123–140.
- Richard P. Brent, David J. Platt, and Timothy S. Trudgian, Accurate estimation of sums over zeros of the Riemann zeta-function, Math. Comp. 90 (2021), no. 332, 2923–2935. MR 4305374, DOI 10.1090/mcom/3652
- Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk, Sharper bounds for the Chebyshev function $\theta (x)$, Math. Comp. 90 (2021), no. 331, 2281–2315. MR 4280302, DOI 10.1090/mcom/3643
- Emanuel Carneiro, Micah B. Milinovich, and Kannan Soundararajan, Fourier optimization and prime gaps, Comment. Math. Helv. 94 (2019), no. 3, 533–568. MR 4014779, DOI 10.4171/CMH/467
- Jaitra Chattopadhyay, Bidisha Roy, and Subha Sarkar, On fractionally dense sets, Rocky Mountain J. Math. 49 (2019), no. 3, 743–760. MR 3983298, DOI 10.1216/RMJ-2019-49-3-743
- N. Costa Pereira, Estimates for the Chebyshev function $\psi (x)-\theta (x)$, Math. Comp. 44 (1985), no. 169, 211–221. MR 771046, DOI 10.1090/S0025-5718-1985-0771046-9
- H. Davenport, The higher arithmetic, 7th ed., Cambridge University Press, Cambridge, 1999. An introduction to the theory of numbers; Chapter VIII by J. H. Davenport. MR 1736549
- C. J. de la Vallée Poussin, Sur la fonction $\zeta (s)$ de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mém. Couronnés et Autres Mém., Publ. Acad. Roy. Sci. Lett. Beaux-Arts Belg. 59 (1899–1900), 74 pp.
- Robert E. Dressler, A stronger Bertrand’s postulate with an application to partitions, Proc. Amer. Math. Soc. 33 (1972), 226–228. MR 292746, DOI 10.1090/S0002-9939-1972-0292746-6
- Robert E. Dressler, Addendum to: “A stronger Bertrand’s postulate with an application to partitions”, Proc. Amer. Math. Soc. 38 (1973), 667. MR 309842, DOI 10.1090/S0002-9939-1973-0309842-8
- Adrian W. Dudek, On the Riemann hypothesis and the difference between primes, Int. J. Number Theory 11 (2015), no. 3, 771–778. MR 3327842, DOI 10.1142/S1793042115500426
- Adrian W. Dudek, An explicit result for primes between cubes, Funct. Approx. Comment. Math. 55 (2016), no. 2, 177–197. MR 3584567, DOI 10.7169/facm/2016.55.2.3
- Adrian W. Dudek, Loïc Grenié, and Giuseppe Molteni, Primes in explicit short intervals on RH, Int. J. Number Theory 12 (2016), no. 5, 1391–1407. MR 3498632, DOI 10.1142/S1793042116500858
- M. El Bachraoui, Primes in the interval $[2n,3n]$, Int. J. Contemp. Math. Sci. 1 (2006), no. 13-16, 617–621. MR 2289714, DOI 10.12988/ijcms.2006.06065
- Kevin Ford, Zero-free regions for the Riemann zeta function, Number theory for the millennium, II (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 25–56. MR 1956243
- Elchin Hasanalizade, Quanli Shen, and Peng-Jie Wong, Counting zeros of Dedekind zeta functions, Math. Comp. 91 (2021), no. 333, 277–293. MR 4350540, DOI 10.1090/mcom/3665
- E. Hasanalizade, Q. Shen, and P.-J. Wong, Counting zeros of the Riemann zeta function, J. Number Theory , posted on (2021)., DOI 10.1016/j.jnt.2021.06.032
- Harald Andrés Helfgott, La conjecture de Goldbach ternaire, Gaz. Math. 140 (2014), 5–18 (French). Translated by Margaret Bilu, revised by the author. MR 3201598
- Thomas A. Hulse and M. Ram Murty, Bertrand’s postulate for number fields, Colloq. Math. 147 (2017), no. 2, 165–180. MR 3628158, DOI 10.4064/cm7048-9-2016
- Habiba Kadiri and Allysa Lumley, Short effective intervals containing primes, Integers 14 (2014), Paper No. A61, 18. MR 3274183
- Habiba Kadiri, Allysa Lumley, and Nathan Ng, Explicit zero density for the Riemann zeta function, J. Math. Anal. Appl. 465 (2018), no. 1, 22–46. MR 3806689, DOI 10.1016/j.jmaa.2018.04.071
- N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), no. 4(82), 185–192 (Russian). MR 106205
- Ethan S. Lee, On an explicit zero-free region for the Dedekind zeta-function, J. Number Theory 224 (2021), 307–322. MR 4244156, DOI 10.1016/j.jnt.2020.12.015
- R. Sherman Lehman, On the difference $\pi (x)-\textrm {li}(x)$, Acta Arith. 11 (1966), 397–410. MR 202686, DOI 10.4064/aa-11-4-397-410
- The LMFDB Collaboration, The L-functions and modular forms database, 2020. http://www.lmfdb.org.
- Andy Loo, On the primes in the interval $[3n,4n]$, Int. J. Contemp. Math. Sci. 6 (2011), no. 37-40, 1871–1882. MR 2855723
- H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119–134. MR 374060, DOI 10.1112/S0025579300004708
- Michael J. Mossinghoff and Timothy S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory 157 (2015), 329–349. MR 3373245, DOI 10.1016/j.jnt.2015.05.010
- Jitsuro Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28 (1952), 177–181. MR 50615
- Tomás Oliveira e Silva, Siegfried Herzog, and Silvio Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4\cdot 10^{18}$, Math. Comp. 83 (2014), no. 288, 2033–2060. MR 3194140, DOI 10.1090/S0025-5718-2013-02787-1
- Dave Platt and Tim Trudgian, The Riemann hypothesis is true up to $3\cdot 10^{12}$, Bull. Lond. Math. Soc. 53 (2021), no. 3, 792–797. MR 4275089, DOI 10.1112/blms.12460
- D. J. Platt and T. S. Trudgian, An improved explicit bound on $|\zeta (\frac 12+it)|$, J. Number Theory 147 (2015), 842–851. MR 3276357, DOI 10.1016/j.jnt.2014.08.019
- David J. Platt and Timothy S. Trudgian, The error term in the prime number theorem, Math. Comp. 90 (2021), no. 328, 871–881. MR 4194165, DOI 10.1090/mcom/3583
- Olivier Ramaré and Yannick Saouter, Short effective intervals containing primes, J. Number Theory 98 (2003), no. 1, 10–33. MR 1950435, DOI 10.1016/S0022-314X(02)00029-X
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Vladimir Shevelev, Charles R. Greathouse IV, and Peter J. C. Moses, On intervals $(kn,(k+1)n)$ containing a prime for all $n>1$, J. Integer Seq. 16 (2013), no. 7, Article 13.7.3, 14. MR 3102656
- Aleksander Simonič, Explicit zero density estimate for the Riemann zeta-function near the critical line, J. Math. Anal. Appl. 491 (2020), no. 1, 124303, 41. MR 4114203, DOI 10.1016/j.jmaa.2020.124303
- Rainer Storn and Kenneth Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (1997), no. 4, 341–359. MR 1479553, DOI 10.1023/A:1008202821328
- Wataru Takeda, On the finiteness of solutions for polynomial-factorial Diophantine equations, Forum Math. 33 (2021), no. 2, 361–374. MR 4223063, DOI 10.1515/forum-2020-0138
- Timothy Trudgian, Improvements to Turing’s method, Math. Comp. 80 (2011), no. 276, 2259–2279. MR 2813359, DOI 10.1090/S0025-5718-2011-02470-1
- Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280–292. MR 3111568, DOI 10.1016/j.jnt.2013.07.017
- T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for Dirichlet $L$-functions and Dedekind zeta-functions, Math. Comp. 84 (2015), no. 293, 1439–1450. MR 3315515, DOI 10.1090/S0025-5718-2014-02898-6
- I. M. Vinogradov, A new estimate of the function $\zeta (1+it)$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 161–164 (Russian). MR 103861
Bibliographic Information
- Michaela Cully-Hugill
- Affiliation: School of Science, UNSW Canberra, Northcott Drive, ACT 2612, Australia
- MR Author ID: 1460044
- ORCID: 0000-0002-4144-1393
- Email: m.cully-hugill@unsw.edu.au
- Ethan S. Lee
- Affiliation: School of Science, UNSW Canberra, Northcott Drive, ACT 2612, Australia
- MR Author ID: 1432725
- ORCID: 0000-0002-4978-6054
- Email: ethan.s.lee@student.adfa.edu.au
- Received by editor(s): May 6, 2021
- Received by editor(s) in revised form: November 5, 2021
- Published electronically: January 25, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1955-1970
- MSC (2020): Primary 11Y35, 11N05, 11M06, 11M26
- DOI: https://doi.org/10.1090/mcom/3719
- MathSciNet review: 4435953