Multiscale scattering in nonlinear Kerr-type media
HTML articles powered by AMS MathViewer
- by Roland Maier and Barbara Verfürth;
- Math. Comp. 91 (2022), 1655-1685
- DOI: https://doi.org/10.1090/mcom/3722
- Published electronically: February 7, 2022
- HTML | PDF | Request permission
Abstract:
We propose a multiscale approach for a nonlinear Helmholtz problem with possible oscillations in the Kerr coefficient, the refractive index, and the diffusion coefficient. The method does not rely on structural assumptions on the coefficients and combines the multiscale technique known as Localized Orthogonal Decomposition with an adaptive iterative approximation of the nonlinearity. We rigorously analyze the method in terms of well-posedness and convergence properties based on suitable assumptions on the initial data and the discretization parameters. Numerical examples illustrate the theoretical error estimates and underline the practicability of the approach.References
- Assyr Abdulle, Weinan E, Björn Engquist, and Eric Vanden-Eijnden, The heterogeneous multiscale method, Acta Numer. 21 (2012), 1–87. MR 2916381, DOI 10.1017/S0962492912000025
- Assyr Abdulle and Patrick Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales, Math. Comp. 86 (2017), no. 304, 549–587. MR 3584540, DOI 10.1090/mcom/3114
- Rodolfo Araya, Christopher Harder, Diego Paredes, and Frédéric Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3505–3531. MR 3143841, DOI 10.1137/120888223
- A. K. Aziz, R. B. Kellogg, and A. B. Stephens, A two point boundary value problem with a rapidly oscillating solution, Numer. Math. 53 (1988), no. 1-2, 107–121. MR 946371, DOI 10.1007/BF01395880
- G. Baruch, G. Fibich, and S. Tsynkov, A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media, J. Comput. Phys. 228 (2009), no. 10, 3789–3815. MR 2511075, DOI 10.1016/j.jcp.2009.02.014
- Donald L. Brown, Dietmar Gallistl, and Daniel Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations, Meshfree methods for partial differential equations VIII, Lect. Notes Comput. Sci. Eng., vol. 115, Springer, Cham, 2017, pp. 85–115. MR 3718330, DOI 10.1007/978-3-319-51954-8_{6}
- A. Bayliss, C. I. Goldstein, and E. Turkel, On accuracy conditions for the numerical computation of waves, J. Comput. Phys. 59 (1985), no. 3, 396–404. MR 794614, DOI 10.1016/0021-9991(85)90119-6
- Susanne C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite elements, Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993) Contemp. Math., vol. 180, Amer. Math. Soc., Providence, RI, 1994, pp. 9–14. MR 1312372, DOI 10.1090/conm/180/01951
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Ivo M. Babuška and Stefan A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal. 34 (1997), no. 6, 2392–2423. MR 1480387, DOI 10.1137/S0036142994269186
- T. Chaumont-Frelet and S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, IMA J. Numer. Anal. 40 (2020), no. 2, 1503–1543. MR 4092293, DOI 10.1093/imanum/drz020
- Patrick Ciarlet Jr. and Christian Stohrer, Finite-element heterogeneous multiscale method for the Helmholtz equation, C. R. Math. Acad. Sci. Paris 352 (2014), no. 9, 755–760 (English, with English and French summaries). MR 3258269, DOI 10.1016/j.crma.2014.07.006
- Théophile Chaumont-Frelet and Frédéric Valentin, A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains, SIAM J. Numer. Anal. 58 (2020), no. 2, 1029–1067. MR 4079241, DOI 10.1137/19M1255616
- Simon N. Chandler-Wilde and Peter Monk, Wave-number-explicit bounds in time-harmonic scattering, SIAM J. Math. Anal. 39 (2008), no. 5, 1428–1455. MR 2377284, DOI 10.1137/060662575
- Weinan E and Bjorn Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003), no. 1, 87–132. MR 1979846, DOI 10.4310/CMS.2003.v1.n1.a8
- Weinan E and Björn Engquist, The heterogeneous multi-scale method for homogenization problems, Multiscale methods in science and engineering, Lect. Notes Comput. Sci. Eng., vol. 44, Springer, Berlin, 2005, pp. 89–110. MR 2161708, DOI 10.1007/3-540-26444-2_{4}
- Alexandre Ern and Jean-Luc Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. MR 3702417, DOI 10.1051/m2an/2016066
- Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013), 116–135. MR 3094911, DOI 10.1016/j.jcp.2013.04.045
- Yalchin Efendiev and Thomas Y. Hou, Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4, Springer, New York, 2009. Theory and applications. MR 2477579
- Gilles Evéquoz and Tobias Weth, Real solutions to the nonlinear Helmholtz equation with local nonlinearity, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 359–388. MR 3149060, DOI 10.1007/s00205-013-0664-2
- K. Gao, S. Fu, and E. T. Chung, An efficient multiscale finite-element method for frequency-domain seismic wave propagation, Bull. Seismological Soc. Amer., 108 (2018), no. 2, 966–982.
- J. A. Goldstone and E. Garmire, Intrinsic optical bistability in nonlinear media, Phys. Rev. Lett. 53 (1984), 910–913.
- Dietmar Gallistl, Patrick Henning, and Barbara Verfürth, Numerical homogenization of ${\bf {H}}(\rm curl)$-problems, SIAM J. Numer. Anal. 56 (2018), no. 3, 1570–1596. MR 3810505, DOI 10.1137/17M1133932
- S. Geevers and R. Maier, Fast mass lumped multiscale wave propagation modelling, IMA J. Numer. Anal. (2021), 1–29, Online first. DOI 10.1093/imanum/drab084.
- D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg. 295 (2015), 1–17. MR 3388822, DOI 10.1016/j.cma.2015.06.017
- I. G. Graham, O. R. Pembery, and E. A. Spence, The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, J. Differential Equations 266 (2019), no. 6, 2869–2923. MR 3912672, DOI 10.1016/j.jde.2018.08.048
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- I. G. Graham and S. A. Sauter, Stability and finite element error analysis for the Helmholtz equation with variable coefficients, Math. Comp. 89 (2020), no. 321, 105–138. MR 4011537, DOI 10.1090/mcom/3457
- F. Hellman and T. Keil, Gridlod, GitHub, https://github.com/fredrikhellman/gridlod, 2019. Commit 0ed4c096df75040145978d48c5307ef5678efed3.
- Fredrik Hellman, Tim Keil, and Axel Målqvist, Numerical upscaling of perturbed diffusion problems, SIAM J. Sci. Comput. 42 (2020), no. 4, A2014–A2036. MR 4119333, DOI 10.1137/19M1278211
- Fredrik Hellman and Axel Målqvist, Numerical homogenization of elliptic PDEs with similar coefficients, Multiscale Model. Simul. 17 (2019), no. 2, 650–674. MR 3945233, DOI 10.1137/18M1189701
- Patrick Henning, Axel Målqvist, and Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 5, 1331–1349. MR 3264356, DOI 10.1051/m2an/2013141
- Patrick Henning, Axel Målqvist, and Daniel Peterseim, Two-level discretization techniques for ground state computations of Bose-Einstein condensates, SIAM J. Numer. Anal. 52 (2014), no. 4, 1525–1550. MR 3227466, DOI 10.1137/130921520
- Patrick Henning and Daniel Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul. 11 (2013), no. 4, 1149–1175. MR 3123820, DOI 10.1137/120900332
- Patrick Henning and Anna Persson, Computational homogenization of time-harmonic Maxwell’s equations, SIAM J. Sci. Comput. 42 (2020), no. 3, B581–B607. MR 4096127, DOI 10.1137/19M1293818
- Thomas Y. Hou and Xiao-Hui Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997), no. 1, 169–189. MR 1455261, DOI 10.1006/jcph.1997.5682
- J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, 2nd edition, 2008.
- J. Kerr, A new relation between electricity and light: dielectrified media birefringent, Philo. Mag., 50 (1875), 337–348.
- David Lafontaine, Euan A. Spence, and Jared Wunsch, For most frequencies, strong trapping has a weak effect in frequency-domain scattering, Comm. Pure Appl. Math. 74 (2021), no. 10, 2025–2063. MR 4303013, DOI 10.1002/cpa.21932
- Jens Markus Melenk, On generalized finite-element methods, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–University of Maryland, College Park. MR 2692949
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- Roland Maier and Daniel Peterseim, Explicit computational wave propagation in micro-heterogeneous media, BIT 59 (2019), no. 2, 443–462. MR 3974048, DOI 10.1007/s10543-018-0735-8
- Andrea Moiola and Euan A. Spence, Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions, Math. Models Methods Appl. Sci. 29 (2019), no. 2, 317–354. MR 3917405, DOI 10.1142/S0218202519500106
- L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115–162. MR 109940
- Assad A. Oberai and Peter M. Pinsky, A multiscale finite element method for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg. 154 (1998), no. 3-4, 281–297. MR 1613757, DOI 10.1016/S0045-7825(97)00130-8
- P. Oswald, On a BPX-preconditioner for $\textrm {P}1$ elements, Computing 51 (1993), no. 2, 125–133 (English, with English and German summaries). MR 1248895, DOI 10.1007/BF02243847
- Mario Ohlberger and Barbara Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast, Multiscale Model. Simul. 16 (2018), no. 1, 385–411. MR 3769687, DOI 10.1137/16M1108820
- J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000), no. 18, 3966–3969.
- Daniel Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp. 86 (2017), no. 305, 1005–1036. MR 3614010, DOI 10.1090/mcom/3156
- Daniel Peterseim and Mira Schedensack, Relaxing the CFL condition for the wave equation on adaptive meshes, J. Sci. Comput. 72 (2017), no. 3, 1196–1213. MR 3687898, DOI 10.1007/s10915-017-0394-y
- J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312 (2006), no. 5781, 1780–1782. MR 2237570, DOI 10.1126/science.1125907
- Daniel Peterseim and Barbara Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, Math. Comp. 89 (2020), no. 326, 2649–2674. MR 4136542, DOI 10.1090/mcom/3529
- B. Proctor, E. Westwig, and F. Wise, Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion, Opt. Lett. 18 (1993), 1654–1656.
- D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and negative refractive index, Science 305 (2004), no. 5685, 788–792.
- Stefan Sauter and Céline Torres, Stability estimate for the Helmholtz equation with rapidly jumping coefficients, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 139, 30. MR 3864702, DOI 10.1007/s00033-018-1031-9
- B. Verfürth, Numerical homogenization for indefinite H(curl)-problems, In K. Mikula, D. Sevcovic, and J. Urban, editors, Proceedings of Equadiff 2017 Conference, Slovak University of Technology, Bratislava, 2017, pp. 137–146.
- B. Verfürth, Numerical homogenization for nonlinear strongly monotone problems, IMA J. Numer. Anal. (2021), 1–26, Online first. DOI 10.1093/imanum.drab004.
- Haijun Wu and Jun Zou, Finite element method and its analysis for a nonlinear Helmholtz equation with high wave numbers, SIAM J. Numer. Anal. 56 (2018), no. 3, 1338–1359. MR 3802272, DOI 10.1137/17M111314X
- Z. Xu and G. Bao, A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects, J. Opt. Soc. Am. A 27 (2010), no. 11, 2347–2353.
- Lijun Yuan and Ya Yan Lu, Robust iterative method for nonlinear Helmholtz equation, J. Comput. Phys. 343 (2017), 1–9. MR 3654046, DOI 10.1016/j.jcp.2017.04.046
Bibliographic Information
- Roland Maier
- Affiliation: Institut für Mathematik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- MR Author ID: 1329180
- Email: roland.maier@uni-jena.de
- Barbara Verfürth
- Affiliation: Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, Englerstr. 2, 76131 Karlsruhe, Germany
- ORCID: 0000-0002-8286-4501
- Email: barbara.verfuerth@kit.edu
- Received by editor(s): November 18, 2020
- Received by editor(s) in revised form: July 16, 2021, December 1, 2021, and December 23, 2021
- Published electronically: February 7, 2022
- Additional Notes: The first author was supported by the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine. The second author’s work was funded by the German Research Foundation (DFG) – Project-ID 258734477 – SFB 1173 as well as by the Federal Ministry of Education and Research (BMBF) and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1655-1685
- MSC (2000): Primary 65N12, 65N30, 35G30
- DOI: https://doi.org/10.1090/mcom/3722
- MathSciNet review: 4435943