A posteriori error analysis for approximations of time-fractional subdiffusion problems
HTML articles powered by AMS MathViewer
- by Lehel Banjai and Charalambos G. Makridakis;
- Math. Comp. 91 (2022), 1711-1737
- DOI: https://doi.org/10.1090/mcom/3723
- Published electronically: March 14, 2022
- HTML | PDF | Request permission
Abstract:
In this paper we consider a sub-diffusion problem where the fractional time derivative is approximated either by the L1 scheme or by Convolution Quadrature. We propose new interpretations of the numerical schemes which lead to a posteriori error estimates. Our approach is based on appropriate pointwise representations of the numerical schemes as perturbed evolution equations and on stability estimates for the evolution equation. A posteriori error estimates in $L^2(H)$ and $L^\infty (H)$ norms of optimal order are derived. Extensive numerical experiments indicate the reliability and the optimality of the estimators for the schemes considered, as well as their efficiency as error indicators driving adaptive mesh selection locating singularities of the problem.References
- Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods, Numer. Math. 114 (2009), no. 1, 133–160. MR 2557872, DOI 10.1007/s00211-009-0254-2
- K. Baker and L. Banjai, Numerical analysis of a wave equation for lossy media obeying a frequency power law, IMA J. of Numer. Anal.5 (2021), drab028.
- L. Banjai and M. López-Fernández, Efficient high order algorithms for fractional integrals and fractional differential equations, Numer. Math. 141 (2019), no. 2, 289–317. MR 3905428, DOI 10.1007/s00211-018-1004-0
- L. Banjai and F.-J. Sayas, Integral Equation Methods for Evolutionary PDE: A Convolution Quadrature Approach, Springer Series in Computational Mathematics, in preparation.
- E. Bänsch, F. Karakatsani, and C. G. Makridakis, A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem, Calcolo 55 (2018), no. 2, Paper No. 19, 32. MR 3797748, DOI 10.1007/s10092-018-0259-2
- Emilia Bazhlekova, The abstract Cauchy problem for the fractional evolution equation, Fract. Calc. Appl. Anal. 1 (1998), no. 3, 255–270. MR 1657572
- Hermann Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Monographs on Applied and Computational Mathematics, vol. 15, Cambridge University Press, Cambridge, 2004. MR 2128285, DOI 10.1017/CBO9780511543234
- Andrea Cangiani, Emmanuil H. Georgoulis, Irene Kyza, and Stephen Metcalfe, Adaptivity and blow-up detection for nonlinear evolution problems, SIAM J. Sci. Comput. 38 (2016), no. 6, A3833–A3856. MR 3584583, DOI 10.1137/16M106073X
- Carl de Boor, Divided differences, Surv. Approx. Theory 1 (2005), 46–69. MR 2221566
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 210154
- Emmanuil H. Georgoulis, Omar Lakkis, Charalambos G. Makridakis, and Juha M. Virtanen, A posteriori error estimates for leap-frog and cosine methods for second order evolution problems, SIAM J. Numer. Anal. 54 (2016), no. 1, 120–136. MR 3448347, DOI 10.1137/140996318
- Rudolf Gorenflo, Francesco Mainardi, Daniele Moretti, and Paolo Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dynam. 29 (2002), no. 1-4, 129–143. Fractional order calculus and its applications. MR 1926470, DOI 10.1023/A:1016547232119
- Wolfgang Hackbusch, Integral equations, International Series of Numerical Mathematics, vol. 120, Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment; Translated and revised by the author from the 1989 German original. MR 1350296, DOI 10.1007/978-3-0348-9215-5
- Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: an explanation of long-tailed profiles, Water Res. Res. 34 (1998), no. 5, 1027-1033
- Bangti Jin, Raytcho Lazarov, and Zhi Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal. 36 (2016), no. 1, 197–221. MR 3463438, DOI 10.1093/imanum/dru063
- Bangti Jin, Buyang Li, and Zhi Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput. 39 (2017), no. 6, A3129–A3152. MR 3738850, DOI 10.1137/17M1118816
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Theodoros Katsaounis and Irene Kyza, A posteriori error analysis for evolution nonlinear Schrödinger equations up to the critical exponent, SIAM J. Numer. Anal. 56 (2018), no. 3, 1405–1434. MR 3803285, DOI 10.1137/16M1108029
- Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073
- Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627–1658. MR 2240628, DOI 10.1090/S0025-5718-06-01858-8
- Yumin Lin and Chuanju Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), no. 2, 1533–1552. MR 2349193, DOI 10.1016/j.jcp.2007.02.001
- María López-Fernández, Christian Lubich, and Achim Schädle, Adaptive, fast, and oblivious convolution in evolution equations with memory, SIAM J. Sci. Comput. 30 (2008), no. 2, 1015–1037. MR 2385897, DOI 10.1137/060674168
- M. Lopez-Fernandez and S. Sauter, Generalized convolution quadrature based on Runge-Kutta methods, Numer. Math. 133 (2016), no. 4, 743–779. MR 3520008, DOI 10.1007/s00211-015-0761-2
- Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), no. 3, 704–719. MR 838249, DOI 10.1137/0517050
- C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129–145. MR 923707, DOI 10.1007/BF01398686
- Christian Lubich, Convolution quadrature revisited, BIT 44 (2004), no. 3, 503–514. MR 2106013, DOI 10.1023/B:BITN.0000046813.23911.2d
- Christian Lubich and Charalambos Makridakis, Interior a posteriori error estimates for time discrete approximations of parabolic problems, Numer. Math. 124 (2013), no. 3, 541–557. MR 3066039, DOI 10.1007/s00211-013-0520-1
- Charalambos Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems, ESAIM Proceedings. Vol. 21 (2007) [Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix], ESAIM Proc., vol. 21, EDP Sci., Les Ulis, 2007, pp. 31–44. MR 2404052, DOI 10.1051/proc:072104
- Charalambos Makridakis and Ricardo H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585–1594. MR 2034895, DOI 10.1137/S0036142902406314
- William McLean, Fast summation by interval clustering for an evolution equation with memory, SIAM J. Sci. Comput. 34 (2012), no. 6, A3039–A3056. MR 3029841, DOI 10.1137/120870505
- Ralf Metzler and Joseph Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278 (2000), no. 1-2, 107–125. MR 1763650, DOI 10.1016/S0378-4371(99)00503-8
- R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, physica status solidi (b) 133 (1986), no. 1, 425-430.
- Ricardo H. Nochetto, Giuseppe Savaré, and Claudio Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525–589. MR 1737503, DOI 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
- Ljubica Oparnica and Endre Süli, Well-posedness of the fractional Zener wave equation for heterogeneous viscoelastic materials, Fract. Calc. Appl. Anal. 23 (2020), no. 1, 126–166. MR 4069924, DOI 10.1515/fca-2020-0005
- F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15.
- H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A 27 (1994), no. 10, 3407–3410. MR 1282181, DOI 10.1088/0305-4470/27/10/017
- Kenichi Sakamoto and Masahiro Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426–447. MR 2805524, DOI 10.1016/j.jmaa.2011.04.058
- Dominik Schötzau and Thomas P. Wihler, A posteriori error estimation for $hp$-version time-stepping methods for parabolic partial differential equations, Numer. Math. 115 (2010), no. 3, 475–509. MR 2640055, DOI 10.1007/s00211-009-0285-8
- Martin Stynes, Eugene O’Riordan, and José Luis Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55 (2017), no. 2, 1057–1079. MR 3639581, DOI 10.1137/16M1082329
- Zhi-zhong Sun and Xiaonan Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), no. 2, 193–209. MR 2200938, DOI 10.1016/j.apnum.2005.03.003
- K. Šiškova, Inverse source problems in evolutionary PDEs, PhD thesis, Ghent University, 2018.
- Yubin Yan, Monzorul Khan, and Neville J. Ford, An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal. 56 (2018), no. 1, 210–227. MR 3744997, DOI 10.1137/16M1094257
Bibliographic Information
- Lehel Banjai
- Affiliation: Maxwell Institute for Mathematical Sciences, School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- MR Author ID: 702930
- Email: l.banjai@hw.ac.uk
- Charalambos G. Makridakis
- Affiliation: Institute for Applied and Computational Mathematics-FORTH, Heraklion GR 70013, Crete, Greece; and Department of Mathematics, University of Sussex, Brighton BN1 9QH, United Kingdom
- MR Author ID: 289627
- Email: c.g.makridakis@iacm.forth.gr
- Received by editor(s): December 30, 2020
- Received by editor(s) in revised form: August 20, 2021, December 7, 2021, and December 28, 2021
- Published electronically: March 14, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1711-1737
- MSC (2020): Primary 35R11, 65M06, 65M15
- DOI: https://doi.org/10.1090/mcom/3723
- MathSciNet review: 4435945