Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh
HTML articles powered by AMS MathViewer
- by Buyang Li;
- Math. Comp. 91 (2022), 1533-1585
- DOI: https://doi.org/10.1090/mcom/3724
- Published electronically: April 26, 2022
- HTML | PDF | Request permission
Abstract:
The Galerkin finite element solution $u_h$ of the Poisson equation $-\Delta u=f$ under the Neumann boundary condition in a possibly nonconvex polygon $\varOmega$, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: \begin{align*} \|u_h\|_{L^{\infty }(\varOmega )} \le C\ell _h\|u\|_{L^{\infty }(\varOmega )} , \end{align*} where $\ell _h = \ln (2+1/h)$ for piecewise linear elements and $\ell _h=1$ for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: \begin{align*} \|u-u_h\|_{L^{\infty }(\varOmega )} \le C\ell _h\|u-I_hu\|_{L^{\infty }(\varOmega )} , \end{align*} where $I_h$ denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: \begin{align*} \|u-u_h\|_{L^\infty (\varOmega )} \le \begin {cases} C\ell _h h^{k+2-\frac {2}{p}} \|f\|_{W^{k,p}(\varOmega )} &\text {if $r\ge k+1$}, \\ C\ell _h h^{k+1} \|f\|_{H^{k}(\varOmega )} &\text {if $r=k$}, \end{cases} \end{align*} where $r\ge 1$ is the degree of finite elements, $k$ is any nonnegative integer no larger than $r$, and $p\in [2,\infty )$ can be arbitrarily large.References
- Thomas Apel, Sergejs Rogovs, Johannes Pfefferer, and Max Winkler, Maximum norm error estimates for Neumann boundary value problems on graded meshes, IMA J. Numer. Anal. 40 (2020), no. 1, 474–497. MR 4050547, DOI 10.1093/imanum/dry076
- Thomas Apel, Arnd Rösch, and Dieter Sirch, $L^\infty$-error estimates on graded meshes with application to optimal control, SIAM J. Control Optim. 48 (2009), no. 3, 1771–1796. MR 2516188, DOI 10.1137/080731724
- C. Bernardi, M. Dauge, and Y. Maday, Polynomials in the Sobolev world, Preprint, hal-00153795, September 2007, https://hal.archives-ouvertes.fr/hal-00153795v2/file/BeDaMa07b.pdf.
- Seng-Kee Chua and Richard L. Wheeden, Estimates of best constants for weighted Poincaré inequalities on convex domains, Proc. London Math. Soc. (3) 93 (2006), no. 1, 197–226. MR 2235947, DOI 10.1017/S0024611506015826
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- M. Crouzeix, S. Larsson, and V. Thomée, Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), no. 207, 121–140. MR 1242058, DOI 10.1090/S0025-5718-1994-1242058-1
- M. Dauge, Regularity and singularities in polyhedral domains. The case of Laplace and Maxwell equations, Presentation, https://perso.univ-rennes1.fr/monique.dauge/publis/Talk_Karlsruhe08.pdf, 2008.
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Alan Demlow, Johnny Guzmán, and Alfred H. Schatz, Local energy estimates for the finite element method on sharply varying grids, Math. Comp. 80 (2011), no. 273, 1–9. MR 2728969, DOI 10.1090/S0025-5718-2010-02353-1
- A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the $W^{1}_{\infty }$ norm for finite element methods on graded meshes, Math. Comp. 81 (2012), no. 278, 743–764. MR 2869035, DOI 10.1090/S0025-5718-2011-02546-9
- Isaac Fried, On the optimality of the pointwise accuracy of the finite element solution, Internat. J. Numer. Methods Engrg. 15 (1980), no. 3, 451–456. MR 560779, DOI 10.1002/nme.1620150311
- Huadong Gao and Weifeng Qiu, The pointwise stabilities of piecewise linear finite element method on non-obtuse tetrahedral meshes of nonconvex polyhedra, J. Sci. Comput. 87 (2021), no. 2, Paper No. 53, 5. MR 4240799, DOI 10.1007/s10915-021-01465-4
- Matthias Geissert, Discrete maximal $L_p$ regularity for finite element operators, SIAM J. Numer. Anal. 44 (2006), no. 2, 677–698. MR 2218965, DOI 10.1137/040616553
- Matthias Geissert, Applications of discrete maximal $L_p$ regularity for finite element operators, Numer. Math. 108 (2007), no. 1, 121–149. MR 2350187, DOI 10.1007/s00211-007-0110-1
- Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR 2445437
- Pierre Grisvard, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original [ MR0775683]; With a foreword by Susanne C. Brenner. MR 3396210, DOI 10.1137/1.9781611972030.ch1
- J. Guzmán and D. Leykekhman, Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra, Math. Comp. 81 (2012), no. 280, 1879–1902. MR 2945141, DOI 10.1090/S0025-5718-2012-02603-2
- Takahito Kashiwabara and Tomoya Kemmochi, Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain, Numer. Math. 144 (2020), no. 3, 553–584. MR 4071825, DOI 10.1007/s00211-019-01098-8
- Dmitriy Leykekhman and Boris Vexler, A priori error estimates for three dimensional parabolic optimal control problems with pointwise control, SIAM J. Control Optim. 54 (2016), no. 5, 2403–2435. MR 3549870, DOI 10.1137/15M1028042
- Dmitriy Leykekhman and Boris Vexler, Finite element pointwise results on convex polyhedral domains, SIAM J. Numer. Anal. 54 (2016), no. 2, 561–587. MR 3470741, DOI 10.1137/15M1013912
- Dmitriy Leykekhman and Boris Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems, SIAM J. Numer. Anal. 54 (2016), no. 3, 1365–1384. MR 3498514, DOI 10.1137/15M103412X
- Buyang Li, Maximum-norm stability and maximal $L^p$ regularity of FEMs for parabolic equations with Lipschitz continuous coefficients, Numer. Math. 131 (2015), no. 3, 489–516. MR 3395142, DOI 10.1007/s00211-015-0698-5
- Buyang Li and Weiwei Sun, Regularity of the diffusion-dispersion tensor and error analysis of Galerkin FEMs for a porous medium flow, SIAM J. Numer. Anal. 53 (2015), no. 3, 1418–1437. MR 3355773, DOI 10.1137/140958803
- Buyang Li and Weiwei Sun, Maximal $L^p$ analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp. 86 (2017), no. 305, 1071–1102. MR 3614012, DOI 10.1090/mcom/3133
- Hengguang Li, The $W^1_p$ stability of the Ritz projection on graded meshes, Math. Comp. 86 (2017), no. 303, 49–74. MR 3557793, DOI 10.1090/mcom/3101
- C. Merucci, Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces, Interpolation spaces and allied topics in analysis (Lund, 1983) Lecture Notes in Math., vol. 1070, Springer, Berlin, 1984, pp. 183–201. MR 760483, DOI 10.1007/BFb0099101
- Dorina Mitrea, A generalization of Dahlberg’s theorem concerning the regularity of harmonic Green potentials, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3771–3793. MR 2386245, DOI 10.1090/S0002-9947-08-04384-5
- Nikolai Yu. Bakaev, Vidar Thomée, and Lars B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp. 72 (2003), no. 244, 1597–1610. MR 1986795, DOI 10.1090/S0025-5718-02-01488-6
- Alfred H. Schatz, A weak discrete maximum principle and stability of the finite element method in $L_{\infty }$ on plane polygonal domains. I, Math. Comp. 34 (1980), no. 149, 77–91. MR 551291, DOI 10.1090/S0025-5718-1980-0551291-3
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements, Math. Comp. 33 (1979), no. 146, 465–492. MR 502067, DOI 10.1090/S0025-5718-1979-0502067-6
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373–389. MR 1804662, DOI 10.1007/s002110000184
Bibliographic Information
- Buyang Li
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People’s Republic of China
- MR Author ID: 910552
- Email: buyang.li@polyu.edu.hk
- Received by editor(s): May 16, 2021
- Received by editor(s) in revised form: November 12, 2021, and November 30, 2021
- Published electronically: April 26, 2022
- Additional Notes: This work was partially supported by a grant from the Research Grants Council of Hong Kong (GRF Project No. PolyU15300519), and an internal grant at The Hong Kong Polytechnic University (PolyU Project ID: P0031035, Work Programme: ZZKQ)
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1533-1585
- MSC (2020): Primary 65M12, 65M15; Secondary 65L06
- DOI: https://doi.org/10.1090/mcom/3724
- MathSciNet review: 4435940