Analysis of finite element methods for surface vector-Laplace eigenproblems
HTML articles powered by AMS MathViewer
- by Arnold Reusken;
- Math. Comp. 91 (2022), 1587-1623
- DOI: https://doi.org/10.1090/mcom/3728
- Published electronically: May 16, 2022
- HTML | PDF | Request permission
Abstract:
In this paper we study finite element discretizations of a surface vector-Laplace eigenproblem. We consider two known classes of finite element methods, namely one based on a vector analogon of the Dziuk-Elliott surface finite element method and one based on the so-called trace finite element technique. A key ingredient in both classes of methods is a penalization method that is used to enforce tangentiality of the vector field in a weak sense. This penalization and the perturbations that arise from numerical approximation of the surface lead to essential nonconformities in the discretization of the variational formulation of the vector-Laplace eigenproblem. We present a general abstract framework applicable to such nonconforming discretizations of eigenproblems. Error bounds both for eigenvalue and eigenvector approximations are derived that depend on certain consistency and approximability parameters. Sharpness of these bounds is discussed. Results of a numerical experiment illustrate certain convergence properties of such finite element discretizations of the surface vector-Laplace eigenproblem.References
- Netgen/NGSolve, 17 April 2019, https://ngsolve.org/.
- Paola F. Antonietti, Annalisa Buffa, and Ilaria Perugia, Discontinuous Galerkin approximation of the Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3483–3503. MR 2220929, DOI 10.1016/j.cma.2005.06.023
- Marino Arroyo and Antonio DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E (3) 79 (2009), no. 3, 031915, 17. MR 2497175, DOI 10.1103/PhysRevE.79.031915
- O. Azencot, M. Ben-Chen, F. Chazal, and M. Ovsjanikov, An operator approach to tangent vector field processing, Comput. Graph. Forum (2013), 73–82.
- O. Azencot, M. Ovsjanikov, F. Chazal, and M. Ben-Chen, Discrete derivatives of vector fields on surfaces – an operator approach, ACM Trans. Graph. 34 (2015), 29:1–29:13.
- I. Babuška and J. Osborn, Eigenvalue problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR 1115240
- M. Ben-Chen, A. Butscher, J. Solomon, and L. Guibas, On discrete Killing fields and patterns on surfaces, Eurographics Symposium on Geometry Processing, Vol. 29, 2010, pp. 1701–1711.
- Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. MR 2652780, DOI 10.1017/S0962492910000012
- Andrea Bonito, Alan Demlow, and Martin Licht, A divergence-conforming finite element method for the surface Stokes equation, SIAM J. Numer. Anal. 58 (2020), no. 5, 2764–2798. MR 4155235, DOI 10.1137/19M1284592
- Andrea Bonito, Alan Demlow, and Ricardo H. Nochetto, Finite element methods for the Laplace-Beltrami operator, Geometric partial differential equations. Part I, Handb. Numer. Anal., vol. 21, Elsevier/North-Holland, Amsterdam, [2020] ©2020, pp. 1–103. MR 4378426, DOI 10.1007/s
- Andrea Bonito, Alan Demlow, and Justin Owen, A priori error estimates for finite element approximations to eigenvalues and eigenfunctions of the Laplace-Beltrami operator, SIAM J. Numer. Anal. 56 (2018), no. 5, 2963–2988. MR 3860898, DOI 10.1137/17M1163311
- Eugene G. D′yakonov, Optimization in solving elliptic problems, CRC Press, Boca Raton, FL, 1996. Translated from the 1989 Russian original; Translation edited and with a preface by Steve McCormick. MR 1396083
- Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. MR 3038698, DOI 10.1017/S0962492913000056
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- Thomas-Peter Fries, Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds, Internat. J. Numer. Methods Fluids 88 (2018), no. 2, 55–78. MR 3846120, DOI 10.1002/fld.4510
- Jörg Grande, Christoph Lehrenfeld, and Arnold Reusken, Analysis of a high-order trace finite element method for PDEs on level set surfaces, SIAM J. Numer. Anal. 56 (2018), no. 1, 228–255. MR 3747467, DOI 10.1137/16M1102203
- Sven Gross, Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken, A trace finite element method for vector-Laplacians on surfaces, SIAM J. Numer. Anal. 56 (2018), no. 4, 2406–2429. MR 3840893, DOI 10.1137/17M1146038
- Peter Hansbo, Mats G. Larson, and Karl Larsson, Analysis of finite element methods for vector Laplacians on surfaces, IMA J. Numer. Anal. 40 (2020), no. 3, 1652–1701. MR 4122487, DOI 10.1093/imanum/drz018
- Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken, Incompressible fluid problems on embedded surfaces: modeling and variational formulations, Interfaces Free Bound. 20 (2018), no. 3, 353–377. MR 3875687, DOI 10.4171/IFB/405
- Thomas Jankuhn and Arnold Reusken, Trace finite element methods for surface vector-Laplace equations, IMA J. Numer. Anal. 41 (2021), no. 1, 48–83. MR 4205052, DOI 10.1093/imanum/drz062
- Andrew V. Knyazev, New estimates for Ritz vectors, Math. Comp. 66 (1997), no. 219, 985–995. MR 1415802, DOI 10.1090/S0025-5718-97-00855-7
- Andrew V. Knyazev and John E. Osborn, New a priori FEM error estimates for eigenvalues, SIAM J. Numer. Anal. 43 (2006), no. 6, 2647–2667. MR 2206452, DOI 10.1137/040613044
- Hajime Koba, Chun Liu, and Yoshikazu Giga, Energetic variational approaches for incompressible fluid systems on an evolving surface, Quart. Appl. Math. 75 (2017), no. 2, 359–389. MR 3614501, DOI 10.1090/qam/1452
- Philip L. Lederer, Christoph Lehrenfeld, and Joachim Schöberl, Divergence-free tangential finite element methods for incompressible flows on surfaces, Internat. J. Numer. Methods Engrg. 121 (2020), no. 11, 2503–2533. MR 4156753, DOI 10.1002/nme.6317
- C. Lehrenfeld, ngsxfem, 17 April 2019, https://github.com/ngsxfem.
- Marius Mitrea and Michael Taylor, Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann. 321 (2001), no. 4, 955–987. MR 1872536, DOI 10.1007/s002080100261
- Tatsu-Hiko Miura, On singular limit equations for incompressible fluids in moving thin domains, Quart. Appl. Math. 76 (2018), no. 2, 215–251. MR 3769895, DOI 10.1090/qam/1495
- I. Nitschke, S. Reuther, and A. Voigt, Hydrodynamic interactions in polar liquid crystals on evolving surfaces, Phys. Rev. Fluids, 4 (2019), p. 044002.
- I. Nitschke, A. Voigt, and J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, J. Fluid Mech. 708 (2012), 418–438. MR 2975450, DOI 10.1017/jfm.2012.317
- Maxim A. Olshanskii, Annalisa Quaini, Arnold Reusken, and Vladimir Yushutin, A finite element method for the surface Stokes problem, SIAM J. Sci. Comput. 40 (2018), no. 4, A2492–A2518. MR 3841618, DOI 10.1137/18M1166183
- Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Inf-sup stability of the trace $\mathbf {P}_2$–$P_1$ Taylor-Hood elements for surface PDEs, Math. Comp. 90 (2021), no. 330, 1527–1555. MR 4273108, DOI 10.1090/mcom/3551
- Maxim A. Olshanskii and Vladimir Yushutin, A penalty finite element method for a fluid system posed on embedded surface, J. Math. Fluid Mech. 21 (2019), no. 1, Paper No. 14, 18. MR 3911729, DOI 10.1007/s00021-019-0420-y
- Peter Petersen, Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016. MR 3469435, DOI 10.1007/978-3-319-26654-1
- Arnold Reusken, Stream function formulation of surface Stokes equations, IMA J. Numer. Anal. 40 (2020), no. 1, 109–139. MR 4050536, DOI 10.1093/imanum/dry062
- S. Reuther and A. Voigt, The interplay of curvature and vortices in flow on curved surfaces, Multiscale Model. Simul. 13 (2015), no. 2, 632–643. MR 3359666, DOI 10.1137/140971798
- S. Reuther and A. Voight, Solving the incompressible surface Navier-Stokes equation by surface finite elements, Phys. Fluids 30 (2018), 012107.
- SciPy, http://www.scipy.org.
- J. Solomon, M. Ben-Chen, A. Butscher, and L. Guibas, Discovery of intrinsic primitives on triangle meshes, Comput. Graph. Forum 30 (2011), 365–374.
- M. Tao, J. Solomon, and A. Butscher, Near-isometric level set tracking, Eurographics Symposium on Geometry Processing, Vol. 35, 2016.
- Michael E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1407–1456. MR 1187618, DOI 10.1080/03605309208820892
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
- Harry Yserentant, A short theory of the Rayleigh-Ritz method, Comput. Methods Appl. Math. 13 (2013), no. 4, 495–502. MR 3107358, DOI 10.1515/cmam-2013-0013
Bibliographic Information
- Arnold Reusken
- Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, D-52056 Aachen, Germany
- MR Author ID: 147305
- ORCID: 0000-0002-4713-9638
- Email: reusken@igpm.rwth-aachen.de
- Received by editor(s): October 30, 2020
- Received by editor(s) in revised form: November 19, 2021
- Published electronically: May 16, 2022
- Additional Notes: The author was financially supported by the German Research Foundation (DFG) within the Research Unit “Vector- and tensor valued surface PDEs” (FOR 3013) with project no. RE1461/11-1
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1587-1623
- MSC (2020): Primary 65N30
- DOI: https://doi.org/10.1090/mcom/3728
- MathSciNet review: 4435941