Series reversion in Calderón’s problem
HTML articles powered by AMS MathViewer
- by Henrik Garde and Nuutti Hyvönen;
- Math. Comp. 91 (2022), 1925-1953
- DOI: https://doi.org/10.1090/mcom/3729
- Published electronically: May 31, 2022
- HTML | PDF | Request permission
Abstract:
This work derives explicit series reversions for the solution of Calderón’s problem. The governing elliptic partial differential equation is $\nabla \cdot (A\nabla u)=0$ in a bounded Lipschitz domain and with a matrix-valued coefficient. The corresponding forward map sends $A$ to a projected version of a local Neumann-to-Dirichlet operator, allowing for the use of partial boundary data and finitely many measurements. It is first shown that the forward map is analytic, and subsequently reversions of its Taylor series up to specified orders lead to a family of numerical methods for solving the inverse problem with increasing accuracy. The convergence of these methods is shown under conditions that ensure the invertibility of the Fréchet derivative of the forward map. The introduced numerical methods are of the same computational complexity as solving the linearised inverse problem. The analogous results are also presented for the smoothened complete electrode model.References
- Giovanni S. Alberti and Matteo Santacesaria, Calderón’s inverse problem with a finite number of measurements, Forum Math. Sigma 7 (2019), Paper No. e35, 20. MR 4016502, DOI 10.1017/fms.2019.31
- G. S. Alberti and M. Santacesaria. Calderón’s inverse problem with a finite number of measurements II: independent data. Appl. Anal., 2020. To appear, DOI 10.1080/00036811.2020.1745192.
- Giovanni S. Alberti and Matteo Santacesaria, Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE, Appl. Comput. Harmon. Anal. 50 (2021), 105–146. MR 4162315, DOI 10.1016/j.acha.2019.08.002
- Giovanni Alessandrini, Maarten V. de Hoop, and Romina Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems 33 (2017), no. 12, 125013, 24. MR 3738499, DOI 10.1088/1361-6420/aa982d
- Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, and Eva Sincich, EIT in a layered anisotropic medium, Inverse Probl. Imaging 12 (2018), no. 3, 667–676. MR 3810174, DOI 10.3934/ipi.2018028
- Simon Arridge, Shari Moskow, and John C. Schotland, Inverse Born series for the Calderon problem, Inverse Problems 28 (2012), no. 3, 035003, 16. MR 2888528, DOI 10.1088/0266-5611/28/3/035003
- Kari Astala and Lassi Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math. (2) 163 (2006), no. 1, 265–299. MR 2195135, DOI 10.4007/annals.2006.163.265
- Kari Astala, Lassi Päivärinta, and Matti Lassas, Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations 30 (2005), no. 1-3, 207–224. MR 2131051, DOI 10.1081/PDE-200044485
- Liliana Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), no. 6, R99–R136. MR 1955896, DOI 10.1088/0266-5611/18/6/201
- L. Borcea, Addendum to: “Electrical impedance tomography” [Inverse Problems 18 (2002), no. 6, R99–R136; 1955896], Inverse Problems 19 (2003), no. 4, 997–998. MR 2005315, DOI 10.1088/0266-5611/19/4/501
- A. P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics, pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
- Valentina Candiani, Jérémi Dardé, Henrik Garde, and Nuutti Hyvönen, Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography, SIAM J. Math. Anal. 52 (2020), no. 6, 6234–6259. MR 4187144, DOI 10.1137/19M1299219
- Pedro Caro and Keith M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum Math. Pi 4 (2016), e2, 28. MR 3456182, DOI 10.1017/fmp.2015.9
- Margaret Cheney, David Isaacson, and Jonathan C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85–101. MR 1669729, DOI 10.1137/S0036144598333613
- K.-S. Cheng, D. Isaacson, J. S. Newell, and D. G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng., 36:918–924, 1989.
- J. Dardé, N. Hyvönen, T. Kuutela, and T. Valkonen. Electrodeless electrode model for electrical impedance tomography. Preprint arXiv:2102.01926, 2021.
- Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1408680, DOI 10.1007/978-94-009-1740-8
- Paolo Fernandes and Gianni Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci. 7 (1997), no. 7, 957–991. MR 1479578, DOI 10.1142/S0218202597000487
- David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, On the linearized local Calderón problem, Math. Res. Lett. 16 (2009), no. 6, 955–970. MR 2576684, DOI 10.4310/MRL.2009.v16.n6.a4
- Henrik Garde, Reconstruction of piecewise constant layered conductivities in electrical impedance tomography, Comm. Partial Differential Equations 45 (2020), no. 9, 1118–1133. MR 4134387, DOI 10.1080/03605302.2020.1760884
- Henrik Garde and Nuutti Hyvönen, Optimal depth-dependent distinguishability bounds for electrical impedance tomography in arbitrary dimension, SIAM J. Appl. Math. 80 (2020), no. 1, 20–43. MR 4046786, DOI 10.1137/19M1258761
- Henrik Garde and Nuutti Hyvönen, Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numer. Math. 147 (2021), no. 3, 579–609. MR 4224930, DOI 10.1007/s00211-020-01170-8
- Henrik Garde, Nuutti Hyvönen, and Topi Kuutela, On regularity of the logarithmic forward map of electrical impedance tomography, SIAM J. Math. Anal. 52 (2020), no. 1, 197–220. MR 4049395, DOI 10.1137/19M1256476
- Henrik Garde and Stratos Staboulis, Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography, Numer. Math. 135 (2017), no. 4, 1221–1251. MR 3621830, DOI 10.1007/s00211-016-0830-1
- Martin Hanke and Martin Brühl, Recent progress in electrical impedance tomography, Inverse Problems 19 (2003), no. 6, S65–S90. Special section on imaging. MR 2036522, DOI 10.1088/0266-5611/19/6/055
- Bastian Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems 35 (2019), no. 2, 024005, 19. MR 3900209, DOI 10.1088/1361-6420/aaf6fc
- Bastian Harrach, An introduction to finite element methods for inverse coefficient problems in elliptic PDES, Jahresber. Dtsch. Math.-Ver. 123 (2021), no. 3, 183–210. MR 4304324, DOI 10.1365/s13291-021-00236-2
- Bastian Harrach and Jin Keun Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal. 42 (2010), no. 4, 1505–1518. MR 2679585, DOI 10.1137/090773970
- Bastian Harrach and Marcel Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography, SIAM J. Math. Anal. 45 (2013), no. 6, 3382–3403. MR 3126995, DOI 10.1137/120886984
- Nuutti Hyvönen, Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions, SIAM J. Appl. Math. 64 (2004), no. 3, 902–931. MR 2068447, DOI 10.1137/S0036139903423303
- Nuutti Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements, Math. Models Methods Appl. Sci. 19 (2009), no. 7, 1185–1202. MR 2553181, DOI 10.1142/S0218202509003759
- Nuutti Hyvönen and Lauri Mustonen, Smoothened complete electrode model, SIAM J. Appl. Math. 77 (2017), no. 6, 2250–2271. MR 3738855, DOI 10.1137/17M1124292
- Nuutti Hyvönen, Lassi Päivärinta, and Janne P. Tamminen, Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps, Inverse Probl. Imaging 12 (2018), no. 2, 373–400. MR 3810163, DOI 10.3934/ipi.2018017
- Oleg Yu. Imanuvilov, Gunther Uhlmann, and Masahiro Yamamoto, The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc. 23 (2010), no. 3, 655–691. MR 2629983, DOI 10.1090/S0894-0347-10-00656-9
- O. Yu. Imanuvilov, Gunther Uhlmann, and M. Yamamoto, The Neumann-to-Dirichlet map in two dimensions, Adv. Math. 281 (2015), 578–593. MR 3366847, DOI 10.1016/j.aim.2015.03.026
- Victor Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging 1 (2007), no. 1, 95–105. MR 2262748, DOI 10.3934/ipi.2007.1.95
- Carlos Kenig and Mikko Salo, The Calderón problem with partial data on manifolds and applications, Anal. PDE 6 (2013), no. 8, 2003–2048. MR 3198591, DOI 10.2140/apde.2013.6.2003
- Carlos Kenig and Mikko Salo, Recent progress in the Calderón problem with partial data, Inverse problems and applications, Contemp. Math., vol. 615, Amer. Math. Soc., Providence, RI, 2014, pp. 193–222. MR 3221605, DOI 10.1090/conm/615/12245
- R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math. 38 (1985), no. 5, 643–667. MR 803253, DOI 10.1002/cpa.3160380513
- Armin Lechleiter and Andreas Rieder, Newton regularizations for impedance tomography: convergence by local injectivity, Inverse Problems 24 (2008), no. 6, 065009, 18. MR 2456956, DOI 10.1088/0266-5611/24/6/065009
- Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71–96. MR 1370758, DOI 10.2307/2118653
- Adrian Nachman and Brian Street, Reconstruction in the Calderón problem with partial data, Comm. Partial Differential Equations 35 (2010), no. 2, 375–390. MR 2748629, DOI 10.1080/03605300903296322
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Erkki Somersalo, Margaret Cheney, and David Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math. 52 (1992), no. 4, 1023–1040. MR 1174044, DOI 10.1137/0152060
- John Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), no. 2, 201–232. MR 1038142, DOI 10.1002/cpa.3160430203
- John Sylvester and Gunther Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153–169. MR 873380, DOI 10.2307/1971291
- E. O. Thorp, Projections onto the subspace of compact operators, Pacific J. Math. 10 (1960), 693–696. MR 114128, DOI 10.2140/pjm.1960.10.693
- G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Problems 25 (2009), no. 12, 123011, 39. MR 3460047, DOI 10.1088/0266-5611/25/12/123011
- Tullio Valent, Boundary value problems of finite elasticity, Springer Tracts in Natural Philosophy, vol. 31, Springer-Verlag, New York, 1988. Local theorems on existence, uniqueness, and analytic dependence on data. MR 917733, DOI 10.1007/978-1-4612-3736-5
- Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR 566954, DOI 10.1007/978-1-4612-6027-1
Bibliographic Information
- Henrik Garde
- Affiliation: Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark.
- MR Author ID: 1077217
- ORCID: 0000-0001-5570-6631
- Email: garde@math.au.dk
- Nuutti Hyvönen
- Affiliation: Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, 00076 Helsinki, Finland.
- ORCID: 0000-0001-6715-8337
- Email: nuutti.hyvonen@aalto.fi
- Received by editor(s): May 7, 2021
- Received by editor(s) in revised form: September 6, 2021, and December 1, 2021
- Published electronically: May 31, 2022
- Additional Notes: This work was supported by the Academy of Finland (decision 336789) and the Aalto Science Institute (AScI). The first author was supported by The Research Foundation of DPhil Ragna Rask-Nielsen and is associated with the Aarhus University DIGIT Centre. The second author was supported by Jane and Aatos Erkko Foundation via the project Electrical impedance tomography—a novel method for improved diagnostics of stroke.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1925-1953
- MSC (2020): Primary 35R30, 41A58, 47H14
- DOI: https://doi.org/10.1090/mcom/3729
- MathSciNet review: 4435952