Full discretization error analysis of exponential integrators for semilinear wave equations
HTML articles powered by AMS MathViewer
- by Benjamin Dörich and Jan Leibold;
- Math. Comp. 91 (2022), 1687-1709
- DOI: https://doi.org/10.1090/mcom/3736
- Published electronically: April 5, 2022
- HTML | PDF | Request permission
Abstract:
In this article we prove full discretization error bounds for semilinear second-order evolution equations. We consider exponential integrators in time applied to an abstract nonconforming semidiscretization in space. Since the fully discrete schemes involve the spatially discretized semigroup, a crucial point in the error analysis is to eliminate the continuous semigroup in the representation of the exact solution. Hence, we derive a modified variation-of-constants formula driven by the spatially discretized semigroup which holds up to a discretization error. Our main results provide bounds for the full discretization errors for exponential Adams and explicit exponential Runge–Kutta methods. We show convergence with the stiff order of the corresponding exponential integrator in time, and errors stemming from the spatial discretization.
As an application of the abstract theory, we consider an acoustic wave equation with kinetic boundary conditions, for which we also present some numerical experiments to illustrate our results.
References
- I. Alonso-Mallo, B. Cano, and N. Reguera, Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods, IMA J. Numer. Anal. 38 (2018), no. 3, 1294–1323. MR 3829162, DOI 10.1093/imanum/drx047
- I. Alonso-Mallo, B. Cano, and N. Reguera, Avoiding order reduction when integrating reaction-diffusion boundary value problems with exponential splitting methods, J. Comput. Appl. Math. 357 (2019), 228–250. MR 3924553, DOI 10.1016/j.cam.2019.02.023
- Daniel Arndt, Wolfgang Bangerth, Bruno Blais et al., The deal.II library, Version 9.2, J. Numer. Math. 28 (2020), no. 3, 131–146. MR 4151106, DOI 10.1515/jnma-2020-0043
- W. Bangerth, R. Hartmann, and G. Kanschat, deal.II—a general-purpose object-oriented finite element library, ACM Trans. Math. Software 33 (2007), no. 4, Art. 24, 27. MR 2404402, DOI 10.1145/1268776.1268779
- Meng Cai, Siqing Gan, and Xiaojie Wang, Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise, J. Sci. Comput. 86 (2021), no. 3, Paper No. 34, 30. MR 4200962, DOI 10.1007/s10915-020-01378-8
- Marco Caliari, Lukas Einkemmer, Alexander Moriggl, and Alexander Ostermann, An accurate and time-parallel rational exponential integrator for hyperbolic and oscillatory PDEs, J. Comput. Phys. 437 (2021), Paper No. 110289, 18. MR 4242415, DOI 10.1016/j.jcp.2021.110289
- Marco Caliari, Peter Kandolf, Alexander Ostermann, and Stefan Rainer, Comparison of software for computing the action of the matrix exponential, BIT 54 (2014), no. 1, 113–128. MR 3177957, DOI 10.1007/s10543-013-0446-0
- M. Caliari, M. Vianello, and L. Bergamaschi, Interpolating discrete advection-diffusion propagators at Leja sequences, J. Comput. Appl. Math. 172 (2004), no. 1, 79–99. MR 2091132, DOI 10.1016/j.cam.2003.11.015
- M. P. Calvo and C. Palencia, A class of explicit multistep exponential integrators for semilinear problems, Numer. Math. 102 (2006), no. 3, 367–381. MR 2207266, DOI 10.1007/s00211-005-0627-0
- Elena Celledoni, David Cohen, and Brynjulf Owren, Symmetric exponential integrators with an application to the cubic Schrödinger equation, Found. Comput. Math. 8 (2008), no. 3, 303–317. MR 2413146, DOI 10.1007/s10208-007-9016-7
- Ziheng Chen, Siqing Gan, and Xiaojie Wang, A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic partial differential equations, Appl. Numer. Math. 157 (2020), 135–158. MR 4113805, DOI 10.1016/j.apnum.2020.05.008
- Giacomo Dimarco and Lorenzo Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations, SIAM J. Numer. Anal. 49 (2011), no. 5, 2057–2077. MR 2861709, DOI 10.1137/100811052
- B. L. Ehle and J. D. Lawson, Generalized Runge-Kutta processes for stiff initial-value problems, J. Inst. Math. Appl. 16 (1975), no. 1, 11–21. MR 391524, DOI 10.1093/imamat/16.1.11
- A. Friedli, Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungssysteme, Numerical treatment of differential equations (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1976) Lecture Notes in Math., Vol. 631, Springer, Berlin-New York, 1978, pp. 35–50 (German). MR 494950
- Ludwig Gauckler, Jianfeng Lu, Jeremy L. Marzuola, Frédéric Rousset, and Katharina Schratz, Trigonometric integrators for quasilinear wave equations, Math. Comp. 88 (2019), no. 316, 717–749. MR 3882282, DOI 10.1090/mcom/3339
- Gisèle Ruiz Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations 11 (2006), no. 4, 457–480. MR 2215623
- Volker Grimm, On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math. 100 (2005), no. 1, 71–89. MR 2129702, DOI 10.1007/s00211-005-0583-8
- David Hipp, Marlis Hochbruck, and Christian Stohrer, Unified error analysis for nonconforming space discretizations of wave-type equations, IMA J. Numer. Anal. 39 (2019), no. 3, 1206–1245. MR 3984056, DOI 10.1093/imanum/dry036
- Marlis Hochbruck and Jan Leibold, Finite element discretization of semilinear acoustic wave equations with kinetic boundary conditions, Electron. Trans. Numer. Anal. 53 (2020), 522–540. MR 4137273, DOI 10.1553/etna_{v}ol53s522
- Marlis Hochbruck and Christian Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 83 (1999), no. 3, 403–426. MR 1715573, DOI 10.1007/s002110050456
- Marlis Hochbruck, Christian Lubich, and Hubert Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998), no. 5, 1552–1574. MR 1618808, DOI 10.1137/S1064827595295337
- Marlis Hochbruck and Alexander Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (2005), no. 3, 1069–1090. MR 2177796, DOI 10.1137/040611434
- Marlis Hochbruck and Alexander Ostermann, Exponential integrators, Acta Numer. 19 (2010), 209–286. MR 2652783, DOI 10.1017/S0962492910000048
- Marlis Hochbruck and Alexander Ostermann, Exponential multistep methods of Adams-type, BIT 51 (2011), no. 4, 889–908. MR 2855432, DOI 10.1007/s10543-011-0332-6
- Marlis Hochbruck, Tomislav Pažur, Andreas Schulz, Ekkachai Thawinan, and Christian Wieners, Efficient time integration for discontinuous Galerkin approximations of linear wave equations [Plenary lecture presented at the 83rd Annual GAMM Conference, Darmstadt, 26th–30th March, 2012], ZAMM Z. Angew. Math. Mech. 95 (2015), no. 3, 237–259. MR 3324777, DOI 10.1002/zamm.201300306
- Aly-Khan Kassam and Lloyd N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005), no. 4, 1214–1233. MR 2143482, DOI 10.1137/S1064827502410633
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), no. 1, 72–88. MR 2104391, DOI 10.1016/j.jcp.2004.08.006
- J. Douglas Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal. 4 (1967), 372–380. MR 221759, DOI 10.1137/0704033
- J. Leibold, A unified error analysis for the numerical solution of nonlinear wave-type equations with application to kinetic boundary conditions, Ph.D. Thesis, 2021. https://doi.org/10.5445/IR/1000130222.
- Vu Thai Luan and Dominik L. Michels, Efficient exponential time integration for simulating nonlinear coupled oscillators, J. Comput. Appl. Math. 391 (2021), Paper No. 113429, 18. MR 4215003, DOI 10.1016/j.cam.2021.113429
- Vu Thai Luan and Alexander Ostermann, Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. 256 (2014), 168–179. MR 3095695, DOI 10.1016/j.cam.2013.07.027
- Dominik L. Michels and Mathieu Desbrun, A semi-analytical approach to molecular dynamics, J. Comput. Phys. 303 (2015), 336–354. MR 3422717, DOI 10.1016/j.jcp.2015.10.009
- Cleve Moler and Charles Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), no. 1, 3–49. MR 1981253, DOI 10.1137/S00361445024180
- Syvert P. Nørsett, An $A$-stable modification of the Adams-Bashforth methods, Conf. on Numerical Solution of Differential Equations (Dundee, 1969) Lecture Notes in Math., Vol. 109, Springer, Berlin-New York, 1969, pp. 214–219. MR 267771
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Martin Pototschnig, Jens Niegemann, Lasha Tkeshelashvili, and Kurt Busch, Time-domain simulations of the nonlinear Maxwell equations using operator-exponential methods, IEEE Trans. Antennas and Propagation 57 (2009), no. 2, 475–483. MR 2517334, DOI 10.1109/TAP.2008.2011181
- Karl Strehmel and Rüdiger Weiner, Linear-implizite Runge-Kutta-Methoden und ihre Anwendung, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 127, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992 (German). With English, French and Russian summaries. MR 1171219, DOI 10.1007/978-3-663-10673-9
- Enzo Vitillaro, Strong solutions for the wave equation with a kinetic boundary condition, Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemp. Math., vol. 594, Amer. Math. Soc., Providence, RI, 2013, pp. 295–307. MR 3155916, DOI 10.1090/conm/594/11793
- Enzo Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1183–1237. MR 3594355, DOI 10.1007/s00205-016-1055-2
Bibliographic Information
- Benjamin Dörich
- Affiliation: Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- ORCID: 0000-0001-5840-2270
- Email: benjamin.doerich@kit.edu
- Jan Leibold
- Affiliation: Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- MR Author ID: 1385394
- Email: jan.leibold@kit.edu
- Received by editor(s): July 6, 2021
- Received by editor(s) in revised form: December 13, 2021
- Published electronically: April 5, 2022
- Additional Notes: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1687-1709
- MSC (2020): Primary 65M12, 65M15; Secondary 65M60, 65J08
- DOI: https://doi.org/10.1090/mcom/3736
- MathSciNet review: 4435944