Certified dimension reduction in nonlinear Bayesian inverse problems
HTML articles powered by AMS MathViewer
- by Olivier Zahm, Tiangang Cui, Kody Law, Alessio Spantini and Youssef Marzouk;
- Math. Comp. 91 (2022), 1789-1835
- DOI: https://doi.org/10.1090/mcom/3737
- Published electronically: April 27, 2022
- HTML | PDF | Request permission
Abstract:
We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends nontrivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback–Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology.References
- S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart, Importance sampling: intrinsic dimension and computational cost, Statist. Sci. 32 (2017), no. 3, 405–431. MR 3696003, DOI 10.1214/17-STS611
- Yves F. Atchadé, An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift, Methodol. Comput. Appl. Probab. 8 (2006), no. 2, 235–254. MR 2324873, DOI 10.1007/s11009-006-8550-0
- D. Bakry and Michel Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206 (French). MR 889476, DOI 10.1007/BFb0075847
- Dominique Bakry, Ivan Gentil, and Michel Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348, Springer, Cham, 2014. MR 3155209, DOI 10.1007/978-3-319-00227-9
- Arindam Banerjee, Xin Guo, and Hui Wang, On the optimality of conditional expectation as a Bregman predictor, IEEE Trans. Inform. Theory 51 (2005), no. 7, 2664–2669. MR 2246384, DOI 10.1109/TIT.2005.850145
- Alexandros Beskos, Ajay Jasra, Kody Law, Youssef Marzouk, and Yan Zhou, Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals, SIAM/ASA J. Uncertain. Quantif. 6 (2018), no. 2, 762–786. MR 3810512, DOI 10.1137/17M1120993
- G. Blanchard, O. Bousquet, and L. Zwald, Statistical properties of kernel principal component analysis, Mach. Learn. 66 (2007), no. 2–3, 259–294.
- S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), no. 5, 1028–1052. MR 1800062, DOI 10.1007/PL00001645
- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration inequalities, Oxford University Press, Oxford, 2013. A nonasymptotic theory of independence; With a foreword by Michel Ledoux. MR 3185193, DOI 10.1093/acprof:oso/9780199535255.001.0001
- M. Brennan, D. Bigoni, O. Zahm, A. Spantini, and Y. Marzouk, Greedy inference with structure-exploiting lazy maps, Adv. Neural Inform. Process. Syst. 33 (2020).
- Yuxin Chen, David Keyes, Kody J. H. Law, and Hatem Ltaief, Accelerated dimension-independent adaptive Metropolis, SIAM J. Sci. Comput. 38 (2016), no. 5, S539–S565. MR 3565576, DOI 10.1137/15M1026432
- J. Andrés Christen and Colin Fox, Markov chain Monte Carlo using an approximation, J. Comput. Graph. Statist. 14 (2005), no. 4, 795–810. MR 2211367, DOI 10.1198/106186005X76983
- Albert Cohen, Ingrid Daubechies, Ronald DeVore, Gerard Kerkyacharian, and Dominique Picard, Capturing ridge functions in high dimensions from point queries, Constr. Approx. 35 (2012), no. 2, 225–243. MR 2891227, DOI 10.1007/s00365-011-9147-6
- Patrick R. Conrad, Youssef M. Marzouk, Natesh S. Pillai, and Aaron Smith, Accelerating asymptotically exact MCMC for computationally intensive models via local approximations, J. Amer. Statist. Assoc. 111 (2016), no. 516, 1591–1607. MR 3601720, DOI 10.1080/01621459.2015.1096787
- Paul G. Constantine, Eric Dow, and Qiqi Wang, Active subspace methods in theory and practice: applications to kriging surfaces, SIAM J. Sci. Comput. 36 (2014), no. 4, A1500–A1524. MR 3233940, DOI 10.1137/130916138
- Paul G. Constantine, Carson Kent, and Tan Bui-Thanh, Accelerating Markov chain Monte Carlo with active subspaces, SIAM J. Sci. Comput. 38 (2016), no. 5, A2779–A2805. MR 3543164, DOI 10.1137/15M1042127
- T. Cui, C. Fox, and M. O’Sullivan, Bayesian calibration of a large-scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm, Water Resour. Res. 47 (2011), no. 10, W10521.
- Tiangang Cui, Colin Fox, and Michael J. O’Sullivan, A posteriori stochastic correction of reduced models in delayed-acceptance MCMC, with application to multiphase subsurface inverse problems, Internat. J. Numer. Methods Engrg. 118 (2019), no. 10, 578–605. MR 3942044, DOI 10.1002/nme.6028
- T. Cui, S. Dolgov, and O. Zahm, Conditional deep inverse Rosenblatt transports, Preprint, arXiv:2106.04170, 2021.
- Tiangang Cui, Kody J. H. Law, and Youssef M. Marzouk, Dimension-independent likelihood-informed MCMC, J. Comput. Phys. 304 (2016), 109–137. MR 3422405, DOI 10.1016/j.jcp.2015.10.008
- T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini, Likelihood-informed dimension reduction for nonlinear inverse problems, Inverse Problems 30 (2014), no. 11, 114015, 28. MR 3274599, DOI 10.1088/0266-5611/30/11/114015
- Tiangang Cui, Youssef Marzouk, and Karen Willcox, Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction, J. Comput. Phys. 315 (2016), 363–387. MR 3490388, DOI 10.1016/j.jcp.2016.03.055
- Tiangang Cui, Youssef M. Marzouk, and Karen E. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems, Internat. J. Numer. Methods Engrg. 102 (2015), no. 5, 966–990. MR 3341244, DOI 10.1002/nme.4748
- Tiangang Cui and Olivier Zahm, Data-free likelihood-informed dimension reduction of Bayesian inverse problems, Inverse Problems 37 (2021), no. 4, Paper No. 045009, 41. MR 4234453, DOI 10.1088/1361-6420/abeafb
- Pierre Del Moral, Arnaud Doucet, and Ajay Jasra, Sequential Monte Carlo samplers, J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (2006), no. 3, 411–436. MR 2278333, DOI 10.1111/j.1467-9868.2006.00553.x
- Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987), no. 2, 216–222. MR 3960671, DOI 10.1016/0370-2693(87)91197-x
- H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput. 33 (2011), no. 1, 407–432. MR 2783201, DOI 10.1137/090780717
- Massimo Fornasier, Karin Schnass, and Jan Vybiral, Learning functions of few arbitrary linear parameters in high dimensions, Found. Comput. Math. 12 (2012), no. 2, 229–262. MR 2898783, DOI 10.1007/s10208-012-9115-y
- Mark Girolami and Ben Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 2, 123–214. With discussion and a reply by the authors. MR 2814492, DOI 10.1111/j.1467-9868.2010.00765.x
- N. Gozlan, C. Roberto, and P.-M. Samson, Characterization of Talagrand’s transport-entropy inequalities in metric spaces, Ann. Probab. 41 (2013), no. 5, 3112–3139. MR 3127876, DOI 10.1214/12-AOP757
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- A. Guionnet and B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1–134. MR 1971582, DOI 10.1007/978-3-540-36107-7_{1}
- H. Haario, M. Laine, M. Lehtinen, E. Saksman, and J. Tamminen, Markov chain Monte Carlo methods for high dimensional inversion in remote sensing, J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004), no. 3, 591–607. MR 2088292, DOI 10.1111/j.1467-9868.2004.02053.x
- Heikki Haario, Eero Saksman, and Johanna Tamminen, An adaptive metropolis algorithm, Bernoulli 7 (2001), no. 2, 223–242. MR 1828504, DOI 10.2307/3318737
- Matthew D. Hoffman and Andrew Gelman, The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res. 15 (2014), 1593–1623. MR 3214779
- Richard Holley and Daniel Stroock, Logarithmic Sobolev inequalities and stochastic Ising models, J. Statist. Phys. 46 (1987), no. 5-6, 1159–1194. MR 893137, DOI 10.1007/BF01011161
- Heinrich Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123 (1901), 241–257 (German). MR 1580570, DOI 10.1515/crll.1901.123.241
- Jari Kaipio and Erkki Somersalo, Statistical and computational inverse problems, Applied Mathematical Sciences, vol. 160, Springer-Verlag, New York, 2005. MR 2102218
- Olav Kallenberg, Foundations of modern probability, Probability and its Applications (New York), Springer-Verlag, New York, 1997. MR 1464694
- E. Kokiopoulou, J. Chen, and Y. Saad, Trace optimization and eigenproblems in dimension reduction methods, Numer. Linear Algebra Appl. 18 (2011), no. 3, 565–602. MR 2760068, DOI 10.1002/nla.743
- Solomon Kullback, Information theory and statistics, Dover Publications, Inc., Mineola, NY, 1997. Reprint of the second (1968) edition. MR 1461541
- Otto Lamminpää, Marko Laine, Simo Tukiainen, and Johanna Tamminen, Likelihood informed dimension reduction for remote sensing of atmospheric constituent profiles, 2017 MATRIX annals, MATRIX Book Ser., vol. 2, Springer, Cham, 2019, pp. 65–78. MR 3931599
- Michel Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXIII, Lecture Notes in Math., vol. 1709, Springer, Berlin, 1999, pp. 120–216. MR 1767995, DOI 10.1007/BFb0096511
- Jinglai Li, A note on the Karhunen-Loève expansions for infinite-dimensional Bayesian inverse problems, Statist. Probab. Lett. 106 (2015), 1–4. MR 3389963, DOI 10.1016/j.spl.2015.06.025
- W. Li and O. A. Cirpka, Efficient geostatistical inverse methods for structured and unstructured grids, Water Resour. Res. 42 (2006), no. 6.
- Chad Lieberman, Karen Willcox, and Omar Ghattas, Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput. 32 (2010), no. 5, 2523–2542. MR 2684726, DOI 10.1137/090775622
- Finn Lindgren, Håvard Rue, and Johan Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 4, 423–498. With discussion and a reply by the authors. MR 2853727, DOI 10.1111/j.1467-9868.2011.00777.x
- A. Manzoni, S. Pagani, and T. Lassila, Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models, SIAM/ASA J. Uncertain. Quantif. 4 (2016), no. 1, 380–412. MR 3488168, DOI 10.1137/140995817
- Youssef M. Marzouk and Habib N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys. 228 (2009), no. 6, 1862–1902. MR 2500666, DOI 10.1016/j.jcp.2008.11.024
- Radford M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov chain Monte Carlo, Chapman & Hall/CRC Handb. Mod. Stat. Methods, CRC Press, Boca Raton, FL, 2011, pp. 113–162. MR 2858447
- F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), no. 2, 361–400. MR 1760620, DOI 10.1006/jfan.1999.3557
- A. B. Owen, Monte Carlo Theory, Methods and Examples, 2013. Available at https://artowen.su.domains/mc/.
- Allan Pinkus, Ridge functions, Cambridge Tracts in Mathematics, vol. 205, Cambridge University Press, Cambridge, 2015. MR 3559591, DOI 10.1017/CBO9781316408124
- Markus Reiss and Martin Wahl, Nonasymptotic upper bounds for the reconstruction error of PCA, Ann. Statist. 48 (2020), no. 2, 1098–1123. MR 4102689, DOI 10.1214/19-AOS1839
- Christian P. Robert and George Casella, Monte Carlo statistical methods, Springer Texts in Statistics, Springer-Verlag, New York, 1999. MR 1707311, DOI 10.1007/978-1-4757-3071-5
- O. S. Rothaus, Lower bounds for eigenvalues of regular Sturm-Liouville operators and the logarithmic Sobolev inequality, Duke Math. J. 45 (1978), no. 2, 351–362. MR 481241, DOI 10.1215/S0012-7094-78-04518-0
- Paul-Baptiste Rubio, François Louf, and Ludovic Chamoin, Fast model updating coupling Bayesian inference and PGD model reduction, Comput. Mech. 62 (2018), no. 6, 1485–1509. MR 3877568, DOI 10.1007/s00466-018-1575-8
- Trent Michael Russi, Uncertainty quantification with experimental data and complex system models, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of California, Berkeley. MR 2941538
- Claudia Schillings, Björn Sprungk, and Philipp Wacker, On the convergence of the Laplace approximation and noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse problems, Numer. Math. 145 (2020), no. 4, 915–971. MR 4125981, DOI 10.1007/s00211-020-01131-1
- Alessio Spantini, Antti Solonen, Tiangang Cui, James Martin, Luis Tenorio, and Youssef Marzouk, Optimal low-rank approximations of Bayesian linear inverse problems, SIAM J. Sci. Comput. 37 (2015), no. 6, A2451–A2487. MR 3418226, DOI 10.1137/140977308
- A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010), 451–559. MR 2652785, DOI 10.1017/S0962492910000061
- J. Tamminen, Adaptive Markov chain Monte Carlo algorithms with geophysical applications, Ph.D. Thesis, University of Helsinki, Faculty of Science, Department of Mathematics, 2004.
- Hemant Tyagi and Volkan Cevher, Learning non-parametric basis independent models from point queries via low-rank methods, Appl. Comput. Harmon. Anal. 37 (2014), no. 3, 389–412. MR 3256780, DOI 10.1016/j.acha.2014.01.002
- Roman Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed sensing, Cambridge Univ. Press, Cambridge, 2012, pp. 210–268. MR 2963170
- Olivier Zahm, Paul G. Constantine, Clémentine Prieur, and Youssef M. Marzouk, Gradient-based dimension reduction of multivariate vector-valued functions, SIAM J. Sci. Comput. 42 (2020), no. 1, A534–A558. MR 4069329, DOI 10.1137/18M1221837
Bibliographic Information
- Olivier Zahm
- Affiliation: Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
- MR Author ID: 1106417
- ORCID: 0000-0003-1410-2940
- Email: olivier.zahm@inria.fr
- Tiangang Cui
- Affiliation: School of Mathematics, Monash University, Victoria 3800, Australia
- MR Author ID: 1084083
- ORCID: 0000-0002-4840-8545
- Email: tiangang.cui@monash.edu
- Kody Law
- Affiliation: School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
- MR Author ID: 869711
- Email: kodylaw@gmail.com
- Alessio Spantini
- Affiliation: Center for Computational Science & Engineering, MIT, Cambridge, Massachusetts 02139
- MR Author ID: 1084144
- Email: spantini@mit.edu
- Youssef Marzouk
- Affiliation: Center for Computational Science & Engineering, MIT, Cambridge, Massachusetts 02139
- MR Author ID: 761311
- Email: ymarz@mit.edu
- Received by editor(s): January 27, 2021
- Received by editor(s) in revised form: November 8, 2021, and January 18, 2022
- Published electronically: April 27, 2022
- Additional Notes: The first, third, fourth, and fifth authors were supported by the DARPA Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) program, F. Fahroo and J. Vandenbrande, program managers, and by the Inria associate team UNQUESTIONABLE. The third author was also supported by the Oak Ridge National Laboratory Directed Research and Development program and by The Alan Turing Institute under the EPSRC grant EP/N510129/1. The second author was supported by the Australian Research Council under the grant DP210103092. The first and second authors were supported by the Robert Bartnik Fellowship offered by the School of Mathematics at Monash University.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 1789-1835
- MSC (2020): Primary 62C10, 91G60, 41-02
- DOI: https://doi.org/10.1090/mcom/3737
- MathSciNet review: 4435948