Explicit Vologodsky integration for hyperelliptic curves
HTML articles powered by AMS MathViewer
- by Enis Kaya;
- Math. Comp. 91 (2022), 2367-2396
- DOI: https://doi.org/10.1090/mcom/3720
- Published electronically: June 30, 2022
- HTML | PDF | Request permission
Abstract:
Vologodsky’s theory of $p$-adic integration plays a central role in computing several interesting invariants in arithmetic geometry [Mosc. Math. J. 3 (2003), pp. 205–247, 260]. In contrast with the theory developed by Coleman [Invent. Math. 69 (1982), pp. 171–208; Duke Math. J. 52 (1985), pp. 765–770; Ann. of Math. (2) 121 (1985), pp. 111–168; Invent. Math. 93 (1988), pp. 239-266], it has the advantage of being insensitive to the reduction type at $p$. Building on recent work of Besser and Zerbes [Vologodsky integration on curves with semi-stable reduction, to appear in Israel J. Math], we describe an algorithm for computing Vologodsky integrals on bad reduction hyperelliptic curves. This extends previous joint work with Katz [Int. Math. Res. Not. IMRN 8 (2022), pp. 6038–6106] to all meromorphic differential forms. We illustrate our algorithm with numerical examples computed in Sage.References
- Jennifer S. Balakrishnan, Iterated Coleman integration for hyperelliptic curves, ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 1, Math. Sci. Publ., Berkeley, CA, 2013, pp. 41–61. MR 3207407, DOI 10.2140/obs.2013.1.41
- Jennifer S. Balakrishnan, Coleman integration for even-degree models of hyperelliptic curves, LMS J. Comput. Math. 18 (2015), no. 1, 258–265. MR 3349319, DOI 10.1112/S1461157015000029
- Jennifer S. Balakrishnan and Amnon Besser, Computing local $p$-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 11 (2012), 2405–2444. MR 2926986, DOI 10.1093/imrn/rnr111
- Jennifer S. Balakrishnan, Amnon Besser, Francesca Bianchi, and J. Steffen Müller, Explicit quadratic Chabauty over number fields, Israel J. Math. 243 (2021), no. 1, 185–232. MR 4299146, DOI 10.1007/s11856-021-2158-5
- Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 16–31. MR 2721410, DOI 10.1007/978-3-642-14518-6_{6}
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Quadratic Chabauty: $p$-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. MR 3565969, DOI 10.1515/crelle-2014-0048
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403–1434. MR 3614022, DOI 10.1090/mcom/3130
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points, I: $p$-adic heights, Duke Math. J. 167 (2018), no. 11, 1981–2038. With an appendix by J. Steffen Müller. MR 3843370, DOI 10.1215/00127094-2018-0013
- J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties, Int. Math. Res. Not. 2021 (2021), no. 15, 11923–12008.
- Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885–944. MR 3961086, DOI 10.4007/annals.2019.189.3.6
- J. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman, and J. Vonk, Quadratic Chabauty for modular curves: Algorithms and examples, Preprint, arXiv:2101.01862, 2021.
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Vladimir G. Berkovich, Integration of one-forms on $p$-adic analytic spaces, Annals of Mathematics Studies, vol. 162, Princeton University Press, Princeton, NJ, 2007. MR 2263704, DOI 10.1515/9781400837151
- Amnon Besser, Coleman integration using the Tannakian formalism, Math. Ann. 322 (2002), no. 1, 19–48. MR 1883387, DOI 10.1007/s002080100263
- Amnon Besser, The $p$-adic height pairings of Coleman-Gross and of Nekovář, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13–25. MR 2076563, DOI 10.1090/crmp/036/02
- Amnon Besser, $p$-adic Arakelov theory, J. Number Theory 111 (2005), no. 2, 318–371. MR 2130113, DOI 10.1016/j.jnt.2004.11.010
- Amnon Besser, $p$-adic heights and Vologodsky integration, J. Number Theory 239 (2022), 273–297. MR 4434496, DOI 10.1016/j.jnt.2021.12.005
- Alex J. Best, Explicit Coleman integration in larger characteristic, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2, Math. Sci. Publ., Berkeley, CA, 2019, pp. 85–102. MR 3952006
- Matthew Baker and Xander Faber, Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin. 33 (2011), no. 3, 349–381. MR 2772537, DOI 10.1007/s10801-010-0247-3
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Francesca Bianchi, Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory 14 (2020), no. 9, 2369–2416. MR 4172711, DOI 10.2140/ant.2020.14.2369
- Jennifer S. Balakrishnan, J. Steffen Müller, and William A. Stein, A $p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties, Math. Comp. 85 (2016), no. 298, 983–1016. MR 3434891, DOI 10.1090/mcom/3029
- Matthew Baker, Sam Payne, and Joseph Rabinoff, On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, pp. 93–121. MR 3204269, DOI 10.1090/conm/605/12113
- Matthew Baker and Joseph Rabinoff, The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, Int. Math. Res. Not. IMRN 16 (2015), 7436–7472. MR 3428970, DOI 10.1093/imrn/rnu168
- Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves, Math. Comp. 89 (2020), no. 326, 2965–2984. MR 4136553, DOI 10.1090/mcom/3542
- Amnon Besser and Sarah Zerbes, Vologodsky integration on curves with semi-stable reduction, to appear in Israel J. Math.
- Robert Coleman and Ehud de Shalit, $p$-adic regulators on curves and special values of $p$-adic $L$-functions, Invent. Math. 93 (1988), no. 2, 239–266. MR 948100, DOI 10.1007/BF01394332
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- Lucia Caporaso, Joe Harris, and Barry Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), no. 1, 1–35. MR 1325796, DOI 10.1090/S0894-0347-97-00195-1
- Robert Coleman and William McCallum, Stable reduction of Fermat curves and Jacobi sum Hecke characters, J. Reine Angew. Math. 385 (1988), 41–101. MR 931215
- Robert F. Coleman, Dilogarithms, regulators and $p$-adic $L$-functions, Invent. Math. 69 (1982), no. 2, 171–208. MR 674400, DOI 10.1007/BF01399500
- Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. MR 808103, DOI 10.1215/S0012-7094-85-05240-8
- Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. MR 782557, DOI 10.2307/1971194
- Pierre Colmez, Intégration sur les variétés $p$-adiques, Astérisque 248 (1998), viii+155 (French, with English and French summaries). MR 1645429
- Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
- David Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not. IMRN 22 (2007), Art. ID rnm095, 29. MR 2376210, DOI 10.1093/imrn/rnm095
- Michael C. Harrison, An extension of Kedlaya’s algorithm for hyperelliptic curves, J. Symbolic Comput. 47 (2012), no. 1, 89–101. MR 2854849, DOI 10.1016/j.jsc.2011.08.019
- David Holmes, Computing Néron-Tate heights of points on hyperelliptic Jacobians, J. Number Theory 132 (2012), no. 6, 1295–1305. MR 2899805, DOI 10.1016/j.jnt.2012.01.002
- Noam Kantor, Rank-favorable bounds for rational points on superelliptic curves of small rank, 2017, preprint available at https://arxiv.org/abs/1708.09120.
- Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338. MR 1877805
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- Minhyong Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. MR 2512779, DOI 10.2977/prims/1234361156
- Minhyong Kim, Massey products for elliptic curves of rank 1, J. Amer. Math. Soc. 23 (2010), no. 3, 725–747. MR 2629986, DOI 10.1090/S0894-0347-10-00665-X
- Eric Katz and Enis Kaya, $p$-adic integration on bad reduction hyperelliptic curves, Int. Math. Res. Not. IMRN 8 (2022), 6038–6106. MR 4406124, DOI 10.1093/imrn/rnaa272
- Eric Katz and Daniel Litt, $p$-adic iterated integrals on semi-stable curves, Preprint, arXiv:2202.05340, 2022.
- Eric Katz, Joseph Rabinoff, and David Zureick-Brown, Uniform bounds for the number of rational points on curves of small Mordell-Weil rank, Duke Math. J. 165 (2016), no. 16, 3189–3240. MR 3566201, DOI 10.1215/00127094-3673558
- Eric Katz, Joseph Rabinoff, and David Zureick-Brown, Diophantine and tropical geometry, and uniformity of rational points on curves, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 231–279. MR 3821174, DOI 10.1090/pspum/097.2/01706
- Eric Katz and David Zureick-Brown, The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions, Compos. Math. 149 (2013), no. 11, 1818–1838. MR 3133294, DOI 10.1112/S0010437X13007410
- The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2020, [Online; accessed 23 April 2020].
- Dino Lorenzini and Thomas J. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002), no. 1, 47–77. MR 1892843, DOI 10.1007/s002220100186
- William McCallum and Bjorn Poonen, The method of Chabauty and Coleman, Explicit methods in number theory, Panor. Synthèses, vol. 36, Soc. Math. France, Paris, 2012, pp. 99–117 (English, with English and French summaries). MR 3098132
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- Jan Steffen Müller, Computing canonical heights using arithmetic intersection theory, Math. Comp. 83 (2014), no. 285, 311–336. MR 3120591, DOI 10.1090/S0025-5718-2013-02719-6
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- Peter Schneider, Basic notions of rigid analytic geometry, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 369–378. MR 1696497, DOI 10.1017/CBO9780511662010.010
- Michael Stoll, Independence of rational points on twists of a given curve, Compos. Math. 142 (2006), no. 5, 1201–1214. MR 2264661, DOI 10.1112/S0010437X06002168
- Michael Stoll, Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 3, 923–956. MR 3908770, DOI 10.4171/JEMS/857
- William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757–1792. MR 3042584, DOI 10.1090/S0025-5718-2012-02649-4
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.3), 2020, https://www.sagemath.org.
- Jan Tuitman, Counting points on curves using a map to $\mathbf {P}^1$, Math. Comp. 85 (2016), no. 298, 961–981. MR 3434890, DOI 10.1090/mcom/2996
- Jan Tuitman, Counting points on curves using a map to $\mathbf {P}^1$, II, Finite Fields Appl. 45 (2017), 301–322. MR 3631366, DOI 10.1016/j.ffa.2016.12.008
- Raymond van Bommel, David Holmes, and J. Steffen Müller, Explicit arithmetic intersection theory and computation of Néron-Tate heights, Math. Comp. 89 (2020), no. 321, 395–410. MR 4011549, DOI 10.1090/mcom/3441
- Vadim Vologodsky, Hodge structure on the fundamental group and its application to $p$-adic integration, Mosc. Math. J. 3 (2003), no. 1, 205–247, 260 (English, with English and Russian summaries). MR 1996809, DOI 10.17323/1609-4514-2003-3-1-205-247
- Yu. G. Zarhin, $p$-adic abelian integrals and commutative Lie groups, J. Math. Sci. 81 (1996), no. 3, 2744–2750. Algebraic geometry, 4. MR 1420227, DOI 10.1007/BF02362339
Bibliographic Information
- Enis Kaya
- Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany
- ORCID: 0000-0002-4529-1126
- Email: enis.kaya@mis.mpg.de
- Received by editor(s): January 19, 2021
- Received by editor(s) in revised form: September 26, 2021
- Published electronically: June 30, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2367-2396
- MSC (2020): Primary 11S80, 11Y35; Secondary 11G20, 11G50, 14G40, 14G05
- DOI: https://doi.org/10.1090/mcom/3720
- MathSciNet review: 4451466