Time domain boundary integral equations and convolution quadrature for scattering by composite media
HTML articles powered by AMS MathViewer
- by Alexander Rieder, Francisco–Javier Sayas and Jens Markus Melenk;
- Math. Comp. 91 (2022), 2165-2195
- DOI: https://doi.org/10.1090/mcom/3730
- Published electronically: June 7, 2022
- HTML | PDF | Request permission
Abstract:
We consider acoustic scattering in heterogeneous media with piecewise constant wave number. The discretization is carried out using a Galerkin boundary element method in space and Runge-Kutta convolution quadrature in time. We prove well-posedness of the scheme and provide a priori estimates for the convergence in space and time.References
- Toufic Abboud, Patrick Joly, Jerónimo Rodríguez, and Isabelle Terrasse, Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains, J. Comput. Phys. 230 (2011), no. 15, 5877–5907. MR 2804957, DOI 10.1016/j.jcp.2011.03.062
- I. Alonso-Mallo and C. Palencia, Optimal orders of convergence for Runge-Kutta methods and linear, initial boundary value problems, Appl. Numer. Math. 44 (2003), no. 1-2, 1–19. MR 1951284, DOI 10.1016/S0168-9274(02)00110-1
- A. Bamberger and T. Ha Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I, Math. Methods Appl. Sci. 8 (1986), no. 3, 405–435 (French, with English summary). MR 859833
- A. Bamberger and T. Ha Duong, Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide, Math. Methods Appl. Sci. 8 (1986), no. 4, 598–608 (French, with English summary). MR 870995
- Lehel Banjai and Christian Lubich, Runge-Kutta convolution coercivity and its use for time-dependent boundary integral equations, IMA J. Numer. Anal. 39 (2019), no. 3, 1134–1157. MR 3984053, DOI 10.1093/imanum/dry033
- Lehel Banjai, Christian Lubich, and Jens Markus Melenk, Runge-Kutta convolution quadrature for operators arising in wave propagation, Numer. Math. 119 (2011), no. 1, 1–20. MR 2824853, DOI 10.1007/s00211-011-0378-z
- Lehel Banjai, Antonio R. Laliena, and Francisco-Javier Sayas, Fully discrete Kirchhoff formulas with CQ-BEM, IMA J. Numer. Anal. 35 (2015), no. 2, 859–884. MR 3335227, DOI 10.1093/imanum/dru017
- Lehel Banjai, Christian Lubich, and Francisco-Javier Sayas, Stable numerical coupling of exterior and interior problems for the wave equation, Numer. Math. 129 (2015), no. 4, 611–646. MR 3317813, DOI 10.1007/s00211-014-0650-0
- Lehel Banjai and Alexander Rieder, Convolution quadrature for the wave equation with a nonlinear impedance boundary condition, Math. Comp. 87 (2018), no. 312, 1783–1819. MR 3787392, DOI 10.1090/mcom/3279
- L. Banjai and S. Sauter, Rapid solution of the wave equation in unbounded domains, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 227–249. MR 2452859, DOI 10.1137/070690754
- Lehel Banjai and Martin Schanz, Wave propagation problems treated with convolution quadrature and BEM, Fast boundary element methods in engineering and industrial applications, Lect. Notes Appl. Comput. Mech., vol. 63, Springer, Heidelberg, 2012, pp. 145–184. MR 3059731, DOI 10.1007/978-3-642-25670-7_{5}
- Thomas S. Brown, Tonatiuh Sánchez-Vizuet, and Francisco-Javier Sayas, Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 2, 423–455. MR 3834431, DOI 10.1051/m2an/2017045
- Xavier Claeys and Ralf Hiptmair, Multi-trace boundary integral formulation for acoustic scattering by composite structures, Comm. Pure Appl. Math. 66 (2013), no. 8, 1163–1201. MR 3069956, DOI 10.1002/cpa.21462
- X. Claeys, A single trace integral formulation of the second kind for acoustic scattering, ETH, Seminar of Applied Mathematics Research, 2011, pp. 2011–2014.
- Martin Costabel and Ernst Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), no. 2, 367–413. MR 782799, DOI 10.1016/0022-247X(85)90118-0
- deltaBEM package, https://github.com/team-pancho/deltaBEM, 2020.
- Víctor Domínguez and Francisco-Javier Sayas, Some properties of layer potentials and boundary integral operators for the wave equation, J. Integral Equations Appl. 25 (2013), no. 2, 253–294. MR 3161614, DOI 10.1216/JIE-2013-25-2-253
- S. Eberle, F. Florian, R. Hiptmair, and S. A. Sauter, A stable boundary integral formulation of an acoustic wave transmission problem with mixed boundary conditions, SIAM J. Math. Anal. 53 (2021), no. 2, 1492–1508. MR 4230428, DOI 10.1137/19M1273852
- Heiko Gimperlein, Fabian Meyer, Ceyhun Özdemir, David Stark, and Ernst P. Stephan, Boundary elements with mesh refinements for the wave equation, Numer. Math. 139 (2018), no. 4, 867–912. MR 3824870, DOI 10.1007/s00211-018-0954-6
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR 3024913
- R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems, Adv. Comput. Math. 37 (2012), no. 1, 39–91. MR 2927645, DOI 10.1007/s10444-011-9194-3
- Matthew E. Hassell, Tianyu Qiu, Tonatiuh Sánchez-Vizuet, and Francisco-Javier Sayas, A new and improved analysis of the time domain boundary integral operators for the acoustic wave equation, J. Integral Equations Appl. 29 (2017), no. 1, 107–136. MR 3628109, DOI 10.1216/JIE-2017-29-1-107
- Matthew E. Hassell and Francisco-Javier Sayas, A fully discrete BEM-FEM scheme for transient acoustic waves, Comput. Methods Appl. Mech. Engrg. 309 (2016), 106–130. MR 3543003, DOI 10.1016/j.cma.2016.05.035
- Ch. Lubich and A. Ostermann, Runge-Kutta methods for parabolic equations and convolution quadrature, Math. Comp. 60 (1993), no. 201, 105–131. MR 1153166, DOI 10.1090/S0025-5718-1993-1153166-7
- C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129–145. MR 923707, DOI 10.1007/BF01398686
- C. Lubich, Convolution quadrature and discretized operational calculus. II, Numer. Math. 52 (1988), no. 4, 413–425. MR 932708, DOI 10.1007/BF01462237
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Jens Markus Melenk and Alexander Rieder, Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear Schrödinger equation, J. Integral Equations Appl. 29 (2017), no. 1, 189–250. MR 3628111, DOI 10.1216/JIE-2017-29-1-189
- Jens Markus Melenk and Alexander Rieder, On superconvergence of Runge-Kutta convolution quadrature for the wave equation, Numer. Math. 147 (2021), no. 1, 157–188. MR 4207520, DOI 10.1007/s00211-020-01161-9
- Tianyu Qiu, Time domain boundary integral equation methods in acoustics, heat diffusion and electromagnetism, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–University of Delaware. MR 3593263
- Tianyu Qiu and Francisco-Javier Sayas, The Costabel-Stephan system of boundary integral equations in the time domain, Math. Comp. 85 (2016), no. 301, 2341–2364. MR 3511284, DOI 10.1090/mcom3053
- Alexander Rieder, Francisco-Javier Sayas, and Jens Markus Melenk, Runge-Kutta approximation for $C_0$-semigroups in the graph norm with applications to time domain boundary integral equations, Partial Differ. Equ. Appl. 1 (2020), no. 6, Paper No. 49, 47. MR 4353543, DOI 10.1007/s42985-020-00051-x
- A. Rieder, F.-J. Sayas, and J. M. Melenk, Time domain boundary integral equations and convolution quadrature for scattering by composite media, arXiv:2010.14162, 2020.
- Francisco-Javier Sayas, Retarded potentials and time domain boundary integral equations, Springer Series in Computational Mathematics, vol. 50, Springer, [Cham], 2016. A road map. MR 3468871, DOI 10.1007/978-3-319-26645-9
- Stefan A. Sauter and Christoph Schwab, Boundary element methods, Springer Series in Computational Mathematics, vol. 39, Springer-Verlag, Berlin, 2011. Translated and expanded from the 2004 German original. MR 2743235, DOI 10.1007/978-3-540-68093-2
- Luc Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR 2328004
- Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
- T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Math. Methods Appl. Sci. 11 (1989), no. 2, 185–213. MR 984053, DOI 10.1002/mma.1670110203
- Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 500055, DOI 10.1007/978-3-642-96439-8
Bibliographic Information
- Alexander Rieder
- Affiliation: Institut für Analysis und Scientific Computing, TU Wien, 1040 Vienna, Austria
- MR Author ID: 1126143
- ORCID: 0000-0003-2144-7648
- Email: alexander.rieder@tuwien.ac.at
- Francisco–Javier Sayas
- MR Author ID: 621885
- Jens Markus Melenk
- Affiliation: Institut für Analysis und Scientific Computing, TU Wien, 1040 Vienna, Austria
- MR Author ID: 613978
- ORCID: 0000-0001-9024-6028
- Email: melenk@tuwien.ac.at
- Received by editor(s): October 27, 2020
- Received by editor(s) in revised form: September 17, 2021, September 20, 2021, and January 21, 2022
- Published electronically: June 7, 2022
- Additional Notes: This work was financially supported by the Austrian Science Fund (FWF) through the projects P29197-N32, P33477, W1245 and SFB65 (A.R.) and project P28367-N35 (J.M.M). The second author was partially supported by NSF-DMS grant 1818867. Part of this work was developed while the second author was a Visiting Professor at the TUW
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2165-2195
- MSC (2020): Primary 65N38, 65M60, 65R20, 65N15, 65N12
- DOI: https://doi.org/10.1090/mcom/3730
- MathSciNet review: 4451459