Norm one Tori and Hasse norm principle
HTML articles powered by AMS MathViewer
- by Akinari Hoshi, Kazuki Kanai and Aiichi Yamasaki;
- Math. Comp. 91 (2022), 2431-2458
- DOI: https://doi.org/10.1090/mcom/3735
- Published electronically: June 7, 2022
- HTML | PDF | Request permission
Abstract:
Let $k$ be a field and $T$ be an algebraic $k$-torus. In 1969, over a global field $k$, Voskresenskiǐ proved that there exists an exact sequence $0\to A(T)\to H^1(k,\operatorname {Pic}\overline {X})^\vee \to \Sha (T)\to 0$ where $A(T)$ is the kernel of the weak approximation of $T$, $\Sha (T)$ is the Shafarevich-Tate group of $T$, $X$ is a smooth $k$-compactification of $T$, $\overline {X}=X\times _k\overline {k}$, $\operatorname {Pic}\overline {X}$ is the Picard group of $\overline {X}$ and $\vee$ stands for the Pontryagin dual. On the other hand, in 1963, Ono proved that for the norm one torus $T=R^{(1)}_{K/k}(\mathbb {G}_m)$ of $K/k$, $\Sha (T)=0$ if and only if the Hasse norm principle holds for $K/k$. First, we determine $H^1(k,\operatorname {Pic} \overline {X})$ for algebraic $k$-tori $T$ up to dimension $5$. Second, we determine $H^1(k,\operatorname {Pic} \overline {X})$ for norm one tori $T=R^{(1)}_{K/k}(\mathbb {G}_m)$ with $[K:k]=n\leq 15$ and $n\neq 12$. We also show that $H^1(k,\operatorname {Pic} \overline {X})=0$ for $T=R^{(1)}_{K/k}(\mathbb {G}_m)$ when the Galois group of the Galois closure of $K/k$ is the Mathieu group $M_n\leq S_n$ with $n=11,12,22,23,24$. Third, we give a necessary and sufficient condition for the Hasse norm principle for $K/k$ with $[K:k]=n\leq 15$ and $n\neq 12$. As applications of the results, we get the group $T(k)/R$ of $R$-equivalence classes over a local field $k$ via Colliot-Thélène and Sansuc’s formula and the Tamagawa number $\tau (T)$ over a number field $k$ via Ono’s formula $\tau (T)=|H^1(k,\widehat {T})|/|\Sha (T)|$.References
- Hans-Jochen Bartels, Zur Arithmetik von Konjugationsklassen in algebraischen Gruppen, J. Algebra 70 (1981), no. 1, 179–199 (German). MR 618387, DOI 10.1016/0021-8693(81)90252-0
- Hans-Jochen Bartels, Zur Arithmetik von Diedergruppenerweiterungen, Math. Ann. 256 (1981), no. 4, 465–473 (German). MR 628228, DOI 10.1007/BF01450542
- F. Rudolf Beyl and Jürgen Tappe, Group extensions, representations, and the Schur multiplicator, Lecture Notes in Mathematics, vol. 958, Springer-Verlag, Berlin-New York, 1982. MR 681287, DOI 10.1007/BFb0067022
- Greg Butler, The transitive groups of degree fourteen and fifteen, J. Symbolic Comput. 16 (1993), no. 5, 413–422. MR 1271082, DOI 10.1006/jsco.1993.1056
- Gregory Butler and John McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no. 8, 863–911. MR 695893, DOI 10.1080/00927878308822884
- J.-L. Colliot-Thélène, Lectures on linear algebraic groups, Beijing Lectures, Moning Side Centre, April 2007, https://www.math.u-psud.fr/~colliot/BeijingLectures2Juin07.pdf.
- J.-L. Colliot-Thélène, D. Harari, and A. N. Skorobogatov, Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math. 23 (2005), no. 2, 161–170 (French, with English summary). MR 2155008, DOI 10.1016/j.exmath.2005.01.016
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280, DOI 10.24033/asens.1325
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148–205. MR 878473, DOI 10.1016/0021-8693(87)90026-3
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 113–186. MR 2348904
- Anne Cortella and Boris Kunyavskiĭ, Rationality problem for generic tori in simple groups, J. Algebra 225 (2000), no. 2, 771–793. MR 1741561, DOI 10.1006/jabr.1999.8150
- John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR 1409812, DOI 10.1007/978-1-4612-0731-3
- Yu. A. Drakokhrust, The complete obstruction to the Hasse principle, Dokl. Akad. Nauk BSSR 30 (1986), no. 1, 5–8, 92 (Russian, with English summary). MR 826604
- Yu. A. Drakokhrust and V. P. Platonov, The Hasse norm principle for algebraic number fields, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 5, 946–968 (Russian). MR 873656
- Shizuo Endo, The rationality problem for norm one tori, Nagoya Math. J. 202 (2011), 83–106. MR 2804547, DOI 10.1215/00277630-1260459
- Shizuo Endô and Takehiko Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7–26. MR 311754, DOI 10.2969/jmsj/02510007
- Shizuo Endô and Takehiko Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85–104. MR 364203, DOI 10.1017/S0027763000016408
- M. Florence, Non rationality of some norm-one tori, Preprint, Available at https://webusers.imj-prg.fr/~mathieu.florence/norm_one.pdf, 2006.
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.9.3, 2018 http://www.gap-system.org.
- Frank Gerth III, The Hasse norm principle in metacyclic extensions of number fields, J. London Math. Soc. (2) 16 (1977), no. 2, 203–208. MR 469890, DOI 10.1112/jlms/s2-16.2.203
- Frank Gerth III, The Hasse norm principle in cyclotomic number fields, J. Reine Angew. Math. 303(304) (1978), 249–252. MR 514683, DOI 10.1515/crll.1978.303-304.249
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- S. Gurak, On the Hasse norm principle, J. Reine Angew. Math. 299(300) (1978), 16–27. MR 491598, DOI 10.1515/crll.1978.299-300.16
- S. Gurak, The Hasse norm principle in non-abelian extensions, J. Reine Angew. Math. 303(304) (1978), 314–318. MR 514688, DOI 10.1515/crll.1978.303-304.314
- S. Gurak, The Hasse norm principle in a compositum of radical extensions, J. London Math. Soc. (2) 22 (1980), no. 3, 385–397. MR 596317, DOI 10.1112/jlms/s2-22.3.385
- G. Ellis, The GAP package HAP, Version 1.12.6, Available from http://www.gap-system.org/Packages/hap.html.
- Sumito Hasegawa, Akinari Hoshi, and Aiichi Yamasaki, Rationality problem for norm one tori in small dimensions, Math. Comp. 89 (2020), no. 322, 923–940. MR 4044456, DOI 10.1090/mcom/3469
- H. Hasse, Beweis eines Satzes und Wiederlegung einer Vermutung über das allgemeine Normenrestsymbol, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Physikalische Kl. (1931), 64–69.
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 199184, DOI 10.2307/1970547
- A. Hoshi, K. Kanai, and A. Yamasaki, Norm one tori and Hasse norm principle, arXiv:1910.01469, 2019.
- Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215. MR 3685951, DOI 10.1090/memo/1176
- Akinari Hoshi and Aiichi Yamasaki, Rationality problem for norm one tori, Israel J. Math. 241 (2021), no. 2, 849–867. MR 4242547, DOI 10.1007/s11856-021-2117-1
- W. Hürlimann, On algebraic tori of norm type, Comment. Math. Helv. 59 (1984), no. 4, 539–549. MR 780075, DOI 10.1007/BF02566365
- Ming-chang Kang, Retract rational fields, J. Algebra 349 (2012), 22–37. MR 2853623, DOI 10.1016/j.jalgebra.2011.10.024
- Alexander Merkurjev, $R$-equivalence on three-dimensional tori and zero-cycles, Algebra Number Theory 2 (2008), no. 1, 69–89. MR 2377363, DOI 10.2140/ant.2008.2.69
- Gregory Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series, vol. 2, The Clarendon Press, Oxford University Press, New York, 1987. MR 1200015
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- B. È. Kunyavskiĭ, Arithmetic properties of three-dimensional algebraic tori, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 102–107, 163 (Russian). Integral lattices and finite linear groups. MR 687845
- B. E. Kunyavskiǐ, Three-dimensional algebraic tori, Selecta Math. Soviet. 9 (1990), 1–21.
- B. E. Kunyavskiǐ, Algebraic tori — thirty years after, Vestn. Samara State Univ. (2007), 198–214.
- Nicole Lemire and Martin Lorenz, On certain lattices associated with generic division algebras, J. Group Theory 3 (2000), no. 4, 385–405. MR 1790337, DOI 10.1515/jgth.2000.031
- Nicole Lemire, Vladimir L. Popov, and Zinovy Reichstein, Cayley groups, J. Amer. Math. Soc. 19 (2006), no. 4, 921–967. MR 2219306, DOI 10.1090/S0894-0347-06-00522-4
- Lieven Le Bruyn, Generic norm one tori, Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 401–407. MR 1378805
- Martin Lorenz, Multiplicative invariant theory, Encyclopaedia of Mathematical Sciences, vol. 135, Springer-Verlag, Berlin, 2005. Invariant Theory and Algebraic Transformation Groups, VI. MR 2131760
- André Macedo, The Hasse norm principle for $A_n$-extensions, J. Number Theory 211 (2020), 500–512. MR 4074565, DOI 10.1016/j.jnt.2019.10.020
- A. Macedo, On the obstruction to the Hasse principle for multinorm equations, arXiv:1912.11941, 2019.
- A. Macedo and R. Newton, Explicit methods for the Hasse norm principle and applications to $A_n$ and $S_n$ extensions, arXiv:1906.03730, 2019.
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- Pierre Mazet, Sur les multiplicateurs de Schur des groupes de Mathieu, J. Algebra 77 (1982), no. 2, 552–576 (French). MR 673133, DOI 10.1016/0021-8693(82)90271-X
- Takashi Ono, Arithmetic of algebraic tori, Ann. of Math. (2) 74 (1961), 101–139. MR 124326, DOI 10.2307/1970307
- Takashi Ono, On the Tamagawa number of algebraic tori, Ann. of Math. (2) 78 (1963), 47–73. MR 156851, DOI 10.2307/1970502
- Takashi Ono, On the relative theory of Tamagawa numbers, Ann. of Math. (2) 82 (1965), 88–111. MR 177991, DOI 10.2307/1970563
- Hans Opolka, Zur Auflösung zahlentheoretischer Knoten, Math. Z. 173 (1980), no. 1, 95–103 (German). MR 584351, DOI 10.1007/BF01215526
- V. P. Platonov, Arithmetic theory of algebraic groups, Uspekhi Mat. Nauk 37 (1982), no. 3(225), 3–54, 224 (Russian). MR 659426
- V. P. Platonov and Yu. A. Drakokhrust, The Hasse principle for algebraic number fields, Dokl. Akad. Nauk SSSR 281 (1985), no. 4, 793–797 (Russian). MR 785628
- V. P. Platonov and Yu. A. Drakokhrust, The Hasse norm principle for primary extensions of algebraic number fields, Dokl. Akad. Nauk SSSR 285 (1985), no. 4, 812–815 (Russian). MR 821357
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- Gordon F. Royle, The transitive groups of degree twelve, J. Symbolic Comput. 4 (1987), no. 2, 255–268. MR 922391, DOI 10.1016/S0747-7171(87)80068-8
- David J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984), no. 2-3, 165–215. MR 738167, DOI 10.1007/BF02760515
- David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC, 1999. MR 1692654, DOI 10.1090/cbms/094
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI 10.1515/crll.1981.327.12
- Richard G. Swan, Noether’s problem in Galois theory, Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982) Springer, New York-Berlin, 1983, pp. 21–40. MR 713790
- Richard G. Swan, The flabby class group of a finite cyclic group, Fourth International Congress of Chinese Mathematicians, AMS/IP Stud. Adv. Math., vol. 48, Amer. Math. Soc., Providence, RI, 2010, pp. 259–269. MR 2744226, DOI 10.1090/amsip/048/14
- J. Tate, Global class field theory, Algebraic Number Theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union, Edited by J. W. S. Cassels and A. Fröhlich, 162–203, Academic Press, London; Thompson Book Co., Inc., Washington, D.C. 1967.
- V. E. Voskresenskiĭ, On two-dimensional algebraic tori. II, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 711–716 (Russian). MR 214597
- V. E. Voskresenskiĭ, The birational equivalence of linear algebraic groups, Dokl. Akad. Nauk SSSR 188 (1969), 978–981; erratum: Dokl. Akad. Nauk SSSR 191 (1969), nos. 1, 2, 3, vii (Russian). MR 252403
- V. E. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 3–19 (Russian). MR 262251
- V. E. Voskresenskiĭ, Stable equivalence of algebraic tori, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 3–10 (Russian). MR 342515
- V. E. Voskresenskiĭ, Projective invariant Demazure models, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 2, 195–210, 431 (Russian). MR 651645
- V. E. Voskresenskiĭ, Maximal tori without affect in semisimple algebraic groups, Mat. Zametki 44 (1988), no. 3, 309–318, 410 (Russian); English transl., Math. Notes 44 (1988), no. 3-4, 651–655 (1989). MR 972194, DOI 10.1007/BF01159125
- V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. MR 1634406, DOI 10.1090/mmono/179
- V. E. Voskresenskiǐ and B. E. Kunyavskiǐ, Maximal tori in semisimple algebraic groups, Kuibyshev State Inst., Kuibyshev, 1984. Deposited in VINITI, March 5, 1984, No. 1269-84 Dep. (Ref. Zh. Mat. (1984), 7A405 Dep.).
- Aiichi Yamasaki, Negative solutions to three-dimensional monomial Noether problem, J. Algebra 370 (2012), 46–78. MR 2966827, DOI 10.1016/j.jalgebra.2012.07.018
Bibliographic Information
- Akinari Hoshi
- Affiliation: Department of Mathematics, Niigata University, Niigata 950-2181, Japan
- MR Author ID: 714371
- Email: hoshi@math.sc.niigata-u.ac.jp
- Kazuki Kanai
- Affiliation: Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Email: kanai@m.sc.niigata-u.ac.jp
- Aiichi Yamasaki
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 602892
- Email: aiichi.yamasaki@gmail.com
- Received by editor(s): August 19, 2020
- Received by editor(s) in revised form: May 12, 2021, August 9, 2021, December 14, 2021, and January 30, 2022
- Published electronically: June 7, 2022
- Additional Notes: This work was partially supported by JSPS KAKENHI Grant Numbers 16K05059, 19K03418, 20K03511. Parts of the work were finished when the first-named author and the third-named author were visiting the National Center for Theoretic Sciences (Taipei), which supported this work.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2431-2458
- MSC (2020): Primary 11E72, 12F20, 13A50, 14E08, 20C10, 20G15
- DOI: https://doi.org/10.1090/mcom/3735
- MathSciNet review: 4451468