Error estimates for a class of continuous Bonse-type inequalities
HTML articles powered by AMS MathViewer
- by Diego Marques and Pavel Trojovský;
- Math. Comp. 91 (2022), 2335-2345
- DOI: https://doi.org/10.1090/mcom/3741
- Published electronically: May 23, 2022
- HTML | PDF | Request permission
Abstract:
Let $p_n$ be the $n$th prime number. In 2000, Papaitopol proved that the inequality $p_1\cdots p_n>p_{n+1}^{n-\pi (n)}$ holds, for all $n\geq 2$, where $\pi (x)$ is the prime counting function. In 2021, Yang and Liao tried to sharpen this inequality by replacing $n-\pi (n)$ by $n-\pi (n)+\pi (n)/\pi (\log n)-2\pi (\pi (n))$, however there is a small mistake in their argument. In this paper, we exploit properties of the logarithm error term in inequalities of the type $p_1\cdots p_n>p_{n+1}^{k(n,x)}$, where $k(n,x)=n-\pi (n)+\pi (n)/\pi (\log n)-x\pi (\pi (n))$. In particular, we improve Yang and Liao estimate, by showing that the previous inequality at $x=1.4$ holds for all $n\geq 21$.References
- Christian Axler, New estimates for the $n$th prime number, J. Integer Seq. 22 (2019), no. 4, Art. 19.4.2, 30. MR 4001002
- Djamel Berkane and Pierre Dusart, On a constant related to the prime counting function, Mediterr. J. Math. 13 (2016), no. 3, 929–938. MR 3513147, DOI 10.1007/s00009-015-0564-9
- Robert J. Betts, Using Bonse’s inequality to find upper bounds on prime gaps, J. Integer Seq. 10 (2007), no. 3, Article 07.3.8, 7. MR 2318393
- Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk, Sharper bounds for the Chebyshev function $\theta (x)$, Math. Comp. 90 (2021), no. 331, 2281–2315. MR 4280302, DOI 10.1090/mcom/3643
- H. Bonse, Über eine bekannte eigenschaft der zahl 30 und ihre verallgemeinerung, Arch. Math. Phys. 13 (1907), 292–295.
- Pierre Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), no. 1, 227–251. MR 3745073, DOI 10.1007/s11139-016-9839-4
- C. László, Generalized integers and Bonse’s theorem, Studia Univ Babeş-Bolyai Math., 34 (1989), 3–6.
- S. E. Mamangakis, Synthetic proof of some prime number inequalities, Duke Math. J. 29 (1962), 471–473. MR 150113, DOI 10.1215/S0012-7094-62-02946-0
- Jean-Pierre Massias and Guy Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), no. 1, 215–242 (French, with French summary). MR 1399956, DOI 10.5802/jtnb.166
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Laurenţiu Panaitopol, An inequality involving prime numbers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11 (2000), 33–35 (2001). MR 1845702
- Shichun Yang and Qunying Liao, On the product of continuous prime numbers, J. Math. Inequal. 15 (2021), no. 1, 239–247. MR 4364638, DOI 10.7153/jmi-2021-15-18
Bibliographic Information
- Diego Marques
- Affiliation: Departamento de Matemática, Universidade de Brasília, Brasília 70910-900, Brazil
- MR Author ID: 870578
- Email: diego@mat.unb.br
- Pavel Trojovský
- Affiliation: Department of Mathematics, Faculty of Science, University of Hradec Kralove, Rokitanského 62, Hradec Kralove 50003, Czech Republic
- ORCID: 0000-0001-8992-125X
- Email: pavel.trojovsky@uhk.cz
- Received by editor(s): September 22, 2021
- Received by editor(s) in revised form: February 9, 2022
- Published electronically: May 23, 2022
- Additional Notes: The first author was supported by CNPq-Brazil. The second author was supported by Project of Excellence of Faculty of Science No. 2209/2022-2023, University of Hradec Králové, Czech Republic.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2335-2345
- MSC (2020): Primary 11A41; Secondary 11N56
- DOI: https://doi.org/10.1090/mcom/3741
- MathSciNet review: 4451464