Crouzeix-Raviart triangular elements are inf-sup stable
HTML articles powered by AMS MathViewer
- by Carsten Carstensen and Stefan A. Sauter;
- Math. Comp. 91 (2022), 2041-2057
- DOI: https://doi.org/10.1090/mcom/3742
- Published electronically: June 8, 2022
- HTML | PDF | Request permission
Abstract:
The Crouzeix-Raviart triangular finite elements are $\inf$-$\sup$ stable for the Stokes equations for any mesh with at least one interior vertex. This result affirms a conjecture of Crouzeix-Falk from 1989 for $p=3$. Our proof applies to any odd degree $p\ge 3$ and concludes the overall stability analysis: Crouzeix-Raviart triangular finite elements of degree $p$ in two dimensions and the piecewise polynomials of degree $p-1$ with vanishing integral form a stable Stokes pair for all positive integers $p$.References
- Mark Ainsworth and Richard Rankin, Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements, SIAM J. Numer. Anal. 46 (2008), no. 6, 3207–3232. MR 2448662, DOI 10.1137/07070838X
- Á. Baran and G. Stoyan, Gauss-Legendre elements: a stable, higher order non-conforming finite element family, Computing 79 (2007), no. 1, 1–21. MR 2282333, DOI 10.1007/s00607-007-0219-1
- J. M. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), no. 4, 722–731. MR 708453, DOI 10.1137/0720048
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- C. Carstensen and S. Sauter, Critical functions and inf-sup stability of Crouzeix-Raviart elements, Comput. Math. Appl. 108 (2022), 12–23. MR 4364795, DOI 10.1016/j.camwa.2021.12.010
- Youngjoon Cha, Miyoung Lee, and Sungyun Lee, Stable nonconforming methods for the Stokes problem, Appl. Math. Comput. 114 (2000), no. 2-3, 155–174. MR 1777283, DOI 10.1016/S0096-3003(99)00109-5
- P. G. Ciarlet, P. Ciarlet, S. A. Sauter, and C. Simian, Intrinsic finite element methods for the computation of fluxes for Poisson’s equation, Numer. Math. 132 (2016), no. 3, 433–462. MR 3457435, DOI 10.1007/s00211-015-0730-9
- Patrick Ciarlet, Charles F. Dunkl, and Stefan A. Sauter, A family of Crouzeix-Raviart finite elements in 3D, Anal. Appl. (Singap.) 16 (2018), no. 5, 649–691. MR 3850091, DOI 10.1142/S0219530518500070
- Michel Crouzeix and Richard S. Falk, Nonconforming finite elements for the Stokes problem, Math. Comp. 52 (1989), no. 186, 437–456. MR 958870, DOI 10.1090/S0025-5718-1989-0958870-8
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Alexandre Ern and Jean-Luc Guermond, Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, vol. 72, Springer, Cham, [2021] ©2021. MR 4242224, DOI 10.1007/978-3-030-56341-7
- M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg. 19 (1983), no. 4, 505–520. MR 702056, DOI 10.1002/nme.1620190405
- Werner Greub, Linear algebra, 4th ed., Graduate Texts in Mathematics, No. 23, Springer-Verlag, New York-Berlin, 1975. MR 369382, DOI 10.1007/978-1-4684-9446-4
- Johnny Guzmán and L. Ridgway Scott, The Scott-Vogelius finite elements revisited, Math. Comp. 88 (2019), no. 316, 515–529. MR 3882274, DOI 10.1090/mcom/3346
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- Michael Neilan, Discrete and conforming smooth de Rham complexes in three dimensions, Math. Comp. 84 (2015), no. 295, 2059–2081. MR 3356019, DOI 10.1090/S0025-5718-2015-02958-5
- L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691, DOI 10.1051/m2an/1985190101111
- Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9–23. MR 725982, DOI 10.1090/S0025-5718-1984-0725982-9
- G. Stoyan and Á. Baran, Crouzeix-Velte decompositions for higher-order finite elements, Comput. Math. Appl. 51 (2006), no. 6-7, 967–986. MR 2228893, DOI 10.1016/j.camwa.2005.10.011
- Gilbert Strang, The fundamental theorem of linear algebra, Amer. Math. Monthly 100 (1993), no. 9, 848–855. MR 1247531, DOI 10.2307/2324660
- Olga Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56 (1949), 672–676. MR 32557, DOI 10.2307/2305561
- Michael Vogelius, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the $p$-version of the finite element method, Numer. Math. 41 (1983), no. 1, 19–37. MR 696548, DOI 10.1007/BF01396303
Bibliographic Information
- Carsten Carstensen
- Affiliation: Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- MR Author ID: 263782
- Email: cc@math.hu-berlin.de
- Stefan A. Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@math.uzh.ch
- Received by editor(s): May 1, 2021
- Received by editor(s) in revised form: February 2, 2022
- Published electronically: June 8, 2022
- Additional Notes: Dedicated to Michel Crouzeix
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2041-2057
- MSC (2020): Primary 65N30, 65N12, 65N15
- DOI: https://doi.org/10.1090/mcom/3742
- MathSciNet review: 4451455