Time integrators for dispersive equations in the long wave regime
HTML articles powered by AMS MathViewer
- by María Cabrera Calvo, Frédéric Rousset and Katharina Schratz;
- Math. Comp. 91 (2022), 2197-2214
- DOI: https://doi.org/10.1090/mcom/3745
- Published electronically: June 7, 2022
- HTML | PDF | Request permission
Abstract:
We introduce a novel class of time integrators for dispersive equations which allow us to reproduce the dynamics of the solution from the classical $\varepsilon = 1$ up to long wave limit regime $\varepsilon \ll 1$ on the natural time scale of the PDE $t= \mathcal {O}(\frac {1}{\varepsilon })$. Most notably the global error of our new schemes is of order $\tau \varepsilon$ (for the first-order scheme) and $\tau ^2 \varepsilon$ (for the second-order scheme) on time intervals of length $\mathcal {O}\left ( \frac {1}{\varepsilon }\right )$.References
- Borys Alvarez-Samaniego and David Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math. 171 (2008), no. 3, 485–541. MR 2372806, DOI 10.1007/s00222-007-0088-4
- Yue Feng and Wenfan Yi, Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation, Multiscale Model. Simul. 19 (2021), no. 3, 1212–1235. MR 4296733, DOI 10.1137/20M1327677
- M. Cabrera Calvo and K. Schratz, Uniformly accurate splitting methods for the Benjamin–Bona–Mahony equation with dispersive parameter, Preprint, arXiv:2105.03732, 2021.
- D. Chiron and F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 42 (2010), no. 1, 64–96. MR 2596546, DOI 10.1137/080738994
- Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787–1003. MR 795808, DOI 10.1080/03605308508820396
- Clémentine Courtès, Frédéric Lagoutière, and Frédéric Rousset, Error estimates of finite difference schemes for the Korteweg–de Vries equation, IMA J. Numer. Anal. 40 (2020), no. 1, 628–685. MR 4050553, DOI 10.1093/imanum/dry082
- David Cohen, Ernst Hairer, and Christian Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math. 110 (2008), no. 2, 113–143. MR 2425152, DOI 10.1007/s00211-008-0163-9
- Erwan Faou and Benoît Grébert, Hamiltonian interpolation of splitting approximations for nonlinear PDEs, Found. Comput. Math. 11 (2011), no. 4, 381–415. MR 2811583, DOI 10.1007/s10208-011-9094-4
- Erwan Faou, Benoît Grébert, and Eric Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. I. Finite-dimensional discretization, Numer. Math. 114 (2010), no. 3, 429–458. MR 2570074, DOI 10.1007/s00211-009-0258-y
- Erwan Faou, Benoît Grébert, and Eric Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. II. Abstract splitting, Numer. Math. 114 (2010), no. 3, 459–490. MR 2570075, DOI 10.1007/s00211-009-0257-z
- Pierre Germain and Frédéric Rousset, Long wave limit for Schrödinger maps, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 8, 2517–2602. MR 4035849, DOI 10.4171/jems/888
- Yan Guo and Xueke Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 673–710. MR 3149069, DOI 10.1007/s00205-013-0683-z
- Ernst Hairer and Christian Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations, SIAM J. Numer. Anal. 38 (2000), no. 2, 414–441. MR 1770056, DOI 10.1137/S0036142999353594
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- Helge Holden, Christian Lubich, and Nils Henrik Risebro, Operator splitting for partial differential equations with Burgers nonlinearity, Math. Comp. 82 (2013), no. 281, 173–185. MR 2983020, DOI 10.1090/S0025-5718-2012-02624-X
- Helge Holden, Kenneth H. Karlsen, Nils Henrik Risebro, and Terence Tao, Operator splitting for the KdV equation, Math. Comp. 80 (2011), no. 274, 821–846. MR 2772097, DOI 10.1090/S0025-5718-2010-02402-0
- Martina Hofmanová and Katharina Schratz, An exponential-type integrator for the KdV equation, Numer. Math. 136 (2017), no. 4, 1117–1137. MR 3671599, DOI 10.1007/s00211-016-0859-1
- Christian Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp. 77 (2008), no. 264, 2141–2153. MR 2429878, DOI 10.1090/S0025-5718-08-02101-7
- Alexander Ostermann and Katharina Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math. 18 (2018), no. 3, 731–755. MR 3807360, DOI 10.1007/s10208-017-9352-1
- Alexander Ostermann and Chunmei Su, A Lawson-type exponential integrator for the Korteweg–de Vries equation, IMA J. Numer. Anal. 40 (2020), no. 4, 2399–2414. MR 4167050, DOI 10.1093/imanum/drz030
- F. Rousset and K. Schratz, Convergence error estimates at low regularity for time discretizations of KdV, Preprint, https://arxiv.org/abs/2102.11125, 2021.
Bibliographic Information
- María Cabrera Calvo
- Affiliation: LJLL (UMR 7598), Sorbonne Université, UPMC, 4 place Jussieu, 75005 Paris, France
- Email: maria.cabrera_calvo@sorbonne-universite.fr
- Frédéric Rousset
- Affiliation: Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay (UMR 8628), 91405 Orsay Cedex, France
- Email: frederic.rousset@universite-paris-saclay.fr
- Katharina Schratz
- Affiliation: LJLL (UMR 7598), Sorbonne Université, UPMC, 4 place Jussieu, 75005 Paris, France
- MR Author ID: 990639
- Email: katharina.schratz@sorbonne-universite.fr
- Received by editor(s): June 20, 2021
- Received by editor(s) in revised form: November 20, 2021, and February 7, 2022
- Published electronically: June 7, 2022
- Additional Notes: This project had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 850941).
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2197-2214
- MSC (2000): Primary 65M15, 65M12
- DOI: https://doi.org/10.1090/mcom/3745
- MathSciNet review: 4451460