On the $q$-analogue of the Pair Correlation Conjecture via Fourier optimization
HTML articles powered by AMS MathViewer
- by Emily Quesada-Herrera;
- Math. Comp. 91 (2022), 2347-2365
- DOI: https://doi.org/10.1090/mcom/3747
- Published electronically: June 14, 2022
- HTML | PDF
Abstract:
We study the $q$-analogue of the average of Montgomery’s function $F(\alpha ,\, T)$ over bounded intervals. Assuming the Generalized Riemann Hypothesis for Dirichlet $L$-functions, we obtain upper and lower bounds for this average over an interval that are quite close to the pointwise conjectured value of $1$. To compute our bounds, we extend a Fourier analysis approach by Carneiro, Chandee, Chirre, and Milinovich, and apply computational methods of non-smooth programming.References
- N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956. Translated by Charles J. Hyman. MR 95369
- Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas (eds.), Semidefinite optimization and convex algebraic geometry, MOS-SIAM Series on Optimization, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013. MR 3075433
- Richard P. Brent, Algorithms for minimization without derivatives, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 339493
- Emanuel Carneiro, Vorrapan Chandee, Andrés Chirre, and Micah B. Milinovich, On Montgomery’s pair correlation conjecture: a tale of three integrals, J. Reine Angew. Math. 786 (2022), 205–243. MR 4434744, DOI 10.1515/crelle-2021-0084
- Emanuel Carneiro, Vorrapan Chandee, Friedrich Littmann, and Micah B. Milinovich, Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function, J. Reine Angew. Math. 725 (2017), 143–182. MR 3630120, DOI 10.1515/crelle-2014-0078
- Emanuel Carneiro, Micah B. Milinovich, and Kannan Soundararajan, Fourier optimization and prime gaps, Comment. Math. Helv. 94 (2019), no. 3, 533–568. MR 4014779, DOI 10.4171/CMH/467
- V. Chandee, K. Klinger-Logan, and X. Li, Pair correlation of zeros of $\Gamma _1(q)$ L-functions, Preprint.
- Vorrapan Chandee, Yoonbok Lee, Sheng-Chi Liu, and Maksym Radziwiłł, Simple zeros of primitive Dirichlet $L$-functions and the asymptotic large sieve, Q. J. Math. 65 (2014), no. 1, 63–87. MR 3179650, DOI 10.1093/qmath/hat008
- Andrés Chirre, Felipe Gonçalves, and David de Laat, Pair correlation estimates for the zeros of the zeta function via semidefinite programming, Adv. Math. 361 (2020), 106926, 22. MR 4037496, DOI 10.1016/j.aim.2019.106926
- Andrés Chirre, Valdir José Pereira Júnior, and David de Laat, Primes in arithmetic progressions and semidefinite programming, Math. Comp. 90 (2021), no. 331, 2235–2246. MR 4280299, DOI 10.1090/mcom/3638
- A. Chirre and E. Quesada-Herrera, Fourier optimization and quadratic forms, Q. J. Math., Posted online 25 January 2022. DOI:10.1093/qmath/haab041.
- Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689–714. MR 1973059, DOI 10.4007/annals.2003.157.689
- D. A. Goldston, On the function $S(T)$ in the theory of the Riemann zeta-function, J. Number Theory 27 (1987), no. 2, 149–177. MR 909834, DOI 10.1016/0022-314X(87)90059-X
- D. A. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta-function, J. Reine Angew. Math. 385 (1988), 24–40. MR 931214, DOI 10.1515/crll.1988.385.24
- D. A. Goldston, Notes on pair correlation of zeros and prime numbers, Recent perspectives in random matrix theory and number theory, London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 79–110. MR 2166459, DOI 10.1017/CBO9780511550492.004
- D. A. Goldston and S. M. Gonek, A note on the number of primes in short intervals, Proc. Amer. Math. Soc. 108 (1990), no. 3, 613–620. MR 1002158, DOI 10.1090/S0002-9939-1990-1002158-6
- D. A. Goldston, S. M. Gonek, A. E. Özlük, and C. Snyder, On the pair correlation of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 80 (2000), no. 1, 31–49. MR 1719184, DOI 10.1112/S0024611500012211
- Daniel A. Goldston and Hugh L. Montgomery, Pair correlation of zeros and primes in short intervals, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 183–203. MR 1018376
- H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc., Providence, RI, 1973, pp. 181–193. MR 337821
- M. Nakata, A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD, 2010 IEEE International Symposium on Computer-Aided Control System Design (CACSD), 2010, pp. 29–34.
- Ali E. Özlük, On the $q$-analogue of the pair correlation conjecture, J. Number Theory 59 (1996), no. 2, 319–351. MR 1402612, DOI 10.1006/jnth.1996.0101
- Keiju Sono, A note on simple zeros of primitive Dirichlet $L$-functions, Bull. Aust. Math. Soc. 93 (2016), no. 1, 19–30. MR 3436011, DOI 10.1017/S0004972715000623
Bibliographic Information
- Emily Quesada-Herrera
- Affiliation: IMPA - Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, Rio de Janeiro, RJ, Brazil 22460-320
- ORCID: 0000-0003-2704-740X
- Received by editor(s): August 23, 2021
- Received by editor(s) in revised form: February 23, 2022
- Published electronically: June 14, 2022
- Additional Notes: The author was supported by CNPq - Brazil and by the STEP Programme of ICTP - Italy.
- © Copyright 2022 by the author
- Journal: Math. Comp. 91 (2022), 2347-2365
- MSC (2020): Primary 11M06, 11M26, 41A30
- DOI: https://doi.org/10.1090/mcom/3747
- MathSciNet review: 4451465