A symmetric low-regularity integrator for nonlinear Klein-Gordon equation
HTML articles powered by AMS MathViewer
- by Yan Wang and Xiaofei Zhao;
- Math. Comp. 91 (2022), 2215-2245
- DOI: https://doi.org/10.1090/mcom/3751
- Published electronically: July 5, 2022
- HTML | PDF | Request permission
Abstract:
In this work, we propose a symmetric exponential-type low- regularity integrator for solving the nonlinear Klein-Gordon equation under rough data. The scheme is explicit in the physical space, and it is efficient under the Fourier pseudospectral discretization. Moreover, it achieves the second-order accuracy in time without loss of regularity of the solution, and its time-reversal symmetry ensures the good long-time behavior. Error estimates are done for both semi- and full discretizations. Numerical results confirm the theoretical results, and comparisons illustrate the improvement of the proposed scheme over the existing methods.References
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- D. D. Baĭnov and E. Minchev, Nonexistence of global solutions of the initial-boundary value problem for the nonlinear Klein-Gordon equation, J. Math. Phys. 36 (1995), no. 2, 756–762. MR 1312077, DOI 10.1063/1.531154
- Weizhu Bao, Yongyong Cai, and Xiaofei Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 52 (2014), no. 5, 2488–2511. MR 3268616, DOI 10.1137/130950665
- Weizhu Bao and Xuanchun Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math. 120 (2012), no. 2, 189–229. MR 2874965, DOI 10.1007/s00211-011-0411-2
- Weizhu Bao, Xuanchun Dong, and Xiaofei Zhao, An exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system, SIAM J. Sci. Comput. 35 (2013), no. 6, A2903–A2927. MR 3138112, DOI 10.1137/110855004
- Simon Baumstark, Erwan Faou, and Katharina Schratz, Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting, Math. Comp. 87 (2018), no. 311, 1227–1254. MR 3766386, DOI 10.1090/mcom/3263
- P.M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, Cambridge, MA, 2014.
- Yvain Bruned and Katharina Schratz, Resonance-based schemes for dispersive equations via decorated trees, Forum Math. Pi 10 (2022), Paper No. e2, 76. MR 4367622, DOI 10.1017/fmp.2021.13
- Weizhu Bao and Xiaofei Zhao, Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, J. Comput. Phys. 398 (2019), 108886, 30. MR 3996337, DOI 10.1016/j.jcp.2019.108886
- Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou, and Florian Méhats, Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations, Numer. Math. 129 (2015), no. 2, 211–250. MR 3300419, DOI 10.1007/s00211-014-0638-9
- M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Preprint, arXiv:math/0311048, 2003.
- Wei Ming Cao and Ben Yu Guo, Fourier collocation method for solving nonlinear Klein-Gordon equation, J. Comput. Phys. 108 (1993), no. 2, 296–305. MR 1242952, DOI 10.1006/jcph.1993.1183
- David Cohen, Ernst Hairer, and Christian Lubich, Modulated Fourier expansions of highly oscillatory differential equations, Found. Comput. Math. 3 (2003), no. 4, 327–345. MR 2009682, DOI 10.1007/s10208-002-0062-x
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, webpage, https://www.math.ucla.edu/~tao/Dispersive/
- María Cabrera Calvo and Katharina Schratz, Uniformly accurate low regularity integrators for the Klein-Gordon equation from the classical to nonrelativistic limit regime, SIAM J. Numer. Anal. 60 (2022), no. 2, 888–912. MR 4410269, DOI 10.1137/21M1415030
- P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions, Z. Angew. Math. Phys. 30 (1979), no. 2, 177–189 (English, with German summary). MR 535978, DOI 10.1007/BF01601932
- A. S. Davydov, Quantum mechanics, International Series in Natural Philosophy, Vol. 1, Pergamon Press, Oxford-New York-Toronto, 1976. Translated from the second Russian edition, edited and with additions by D. ter Haar; Pergamon International Library of Science, Technology, Engineering and Social Studies. MR 468691
- Xuanchun Dong, Zhiguo Xu, and Xiaofei Zhao, On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime, Commun. Comput. Phys. 16 (2014), no. 2, 440–466. MR 3216979, DOI 10.4208/cicp.280813.190214a
- D. B. Duncan, Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal. 34 (1997), no. 5, 1742–1760. MR 1472194, DOI 10.1137/S0036142993243106
- Erwan Faou, Geometric numerical integration and Schrödinger equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2012. MR 2895408, DOI 10.4171/100
- S. Flach, D.O. Krimer, Ch. Skokos, Universal spreading of wave packets in disordered nonlinear systems, Phys. Rev. Lett. 102 (2009) 024101.
- Walter Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381–397. MR 138200, DOI 10.1007/BF01386037
- Leslie Greengard and June-Yub Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev. 46 (2004), no. 3, 443–454. MR 2115056, DOI 10.1137/S003614450343200X
- J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), no. 4, 487–505. MR 786279, DOI 10.1007/BF01168155
- J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 1, 15–35 (English, with French summary). MR 984146, DOI 10.1016/s0294-1449(16)30329-8
- Volker Grimm, On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math. 100 (2005), no. 1, 71–89. MR 2129702, DOI 10.1007/s00211-005-0583-8
- Volker Grimm, A note on the Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 102 (2005), no. 1, 61–66. MR 2206672, DOI 10.1007/s00211-005-0639-9
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- Marlis Hochbruck and Christian Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 83 (1999), no. 3, 403–426. MR 1715573, DOI 10.1007/s002110050456
- Marlis Hochbruck and Alexander Ostermann, Exponential integrators, Acta Numer. 19 (2010), 209–286. MR 2652783, DOI 10.1017/S0962492910000048
- Martina Hofmanová and Katharina Schratz, An exponential-type integrator for the KdV equation, Numer. Math. 136 (2017), no. 4, 1117–1137. MR 3671599, DOI 10.1007/s00211-016-0859-1
- K. Huang, A Superfluid Universe, World Scientific, Hackensack, NJ, 2016.
- Chaolong Jiang, Yushun Wang, and Wenjun Cai, A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation, J. Comput. Phys. 419 (2020), 109690, 18. MR 4121581, DOI 10.1016/j.jcp.2020.109690
- Marvin Knöller, Alexander Ostermann, and Katharina Schratz, A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986. MR 3992056, DOI 10.1137/18M1198375
- Changying Liu, Arieh Iserles, and Xinyuan Wu, Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations, J. Comput. Phys. 356 (2018), 1–30. MR 3743627, DOI 10.1016/j.jcp.2017.10.057
- X. Li and B. Y. Guo, A Legendre pseudospectral method for solving nonlinear Klein-Gordon equation, J. Comput. Math. 15 (1997), no. 2, 105–126. MR 1448816
- Buyang Li and Yifei Wu, A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation, Numer. Math. 149 (2021), no. 1, 151–183. MR 4312402, DOI 10.1007/s00211-021-01226-3
- A. Ostermann, F. Rousset, K. Schratz, Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces, arXiv:2006.12785, to appear in J. Eur. Math. Soc. (2021)
- Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity, Found. Comput. Math. 21 (2021), no. 3, 725–765. MR 4269650, DOI 10.1007/s10208-020-09468-7
- Alexander Ostermann and Katharina Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math. 18 (2018), no. 3, 731–755. MR 3807360, DOI 10.1007/s10208-017-9352-1
- Alexander Ostermann and Chunmei Su, Two exponential-type integrators for the “good” Boussinesq equation, Numer. Math. 143 (2019), no. 3, 683–712. MR 4020668, DOI 10.1007/s00211-019-01064-4
- Frédéric Rousset and Katharina Schratz, A general framework of low regularity integrators, SIAM J. Numer. Anal. 59 (2021), no. 3, 1735–1768. MR 4275500, DOI 10.1137/20M1371506
- Jie Shen, Tao Tang, and Li-Lian Wang, Spectral methods, Springer Series in Computational Mathematics, vol. 41, Springer, Heidelberg, 2011. Algorithms, analysis and applications. MR 2867779, DOI 10.1007/978-3-540-71041-7
- Katharina Schratz, Yan Wang, and Xiaofei Zhao, Low-regularity integrators for nonlinear Dirac equations, Math. Comp. 90 (2021), no. 327, 189–214. MR 4166458, DOI 10.1090/mcom/3557
- Walter Strauss and Luis Vazquez, Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys. 28 (1978), no. 2, 271–278. MR 503140, DOI 10.1016/0021-9991(78)90038-4
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 1776072, DOI 10.1137/1.9780898719598
- Yves Tourigny, Product approximation for nonlinear Klein-Gordon equations, IMA J. Numer. Anal. 10 (1990), no. 3, 449–462. MR 1068202, DOI 10.1093/imanum/10.3.449
- Yifei Wu and Fangyan Yao, A first-order Fourier integrator for the nonlinear Schrödinger equation on $\Bbb {T}$ without loss of regularity, Math. Comp. 91 (2022), no. 335, 1213–1235. MR 4405493, DOI 10.1090/mcom/3705
- Y. Wu, X. Zhao, Embedded exponential-type low-regularity integrators for KdV equation under rough data, BIT Numer Math (2021). https://doi.org/10.1007/s10543-021-00895-8.
- Yan Wang and Xiaofei Zhao, Symmetric high order Gautschi-type exponential wave integrators pseudospectral method for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, Int. J. Numer. Anal. Model. 15 (2018), no. 3, 405–427. MR 3783860
Bibliographic Information
- Yan Wang
- Affiliation: School of Mathematics and Statistics, and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, 430079 Wuhan, People’s Republic of China
- ORCID: 0000-0002-2540-4410
- Email: wang.yan@mail.ccnu.edu.cn
- Xiaofei Zhao
- Affiliation: School of Mathematics and Statistics & Computational Sciences Hubei Key Laboratory, Wuhan University, 430072 Wuhan, People’s Republic of China
- MR Author ID: 1045425
- Email: matzhxf@whu.edu.cn
- Received by editor(s): June 27, 2021
- Received by editor(s) in revised form: February 27, 2022
- Published electronically: July 5, 2022
- Additional Notes: The first author was supported by the NSFC 12001221, Hubei Provincial Science and Technology Innovation Base (Platform) Special Project 2020DFH002, the Natural Science Foundation of Hubei Province No. 2020CFB221 and the Fundamental Research Funds for the Central Universities CCNU19TD010. The second author was supported by NSFC 11901440, the National Key Research and Development Program of China No. 2020YFA0714200, and the Natural Science Foundation of Hubei Province No. 2019CFA007
The second author is the corresponding author. - © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2215-2245
- MSC (2000): Primary 65M12, 65M15, 65M70, 81Q05, 35Q40
- DOI: https://doi.org/10.1090/mcom/3751
- MathSciNet review: 4451461