Error estimates for discrete generalized FEMs with locally optimal spectral approximations
HTML articles powered by AMS MathViewer
- by Chupeng Ma and Robert Scheichl;
- Math. Comp. 91 (2022), 2539-2569
- DOI: https://doi.org/10.1090/mcom/3755
- Published electronically: July 12, 2022
- HTML | PDF | Request permission
Abstract:
This paper is concerned with error estimates of the fully discrete generalized finite element method (GFEM) with optimal local approximation spaces for solving elliptic problems with heterogeneous coefficients. The local approximation spaces are constructed using eigenvectors of local eigenvalue problems solved by the finite element method on some sufficiently fine mesh with mesh size $h$. The error bound of the discrete GFEM approximation is proved to converge as $h\rightarrow 0$ towards that of the continuous GFEM approximation, which was shown to decay nearly exponentially in previous works. Moreover, even for fixed mesh size $h$, a nearly exponential rate of convergence of the local approximation errors with respect to the dimension of the local spaces is established. An efficient and accurate method for solving the discrete eigenvalue problems is proposed by incorporating the discrete $A$-harmonic constraint directly into the eigensolver. Numerical experiments are carried out to confirm the theoretical results and to demonstrate the effectiveness of the method.References
- Ivo Babuška, Xu Huang, and Robert Lipton, Machine computation using the exponentially convergent multiscale spectral generalized finite element method, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 2, 493–515. MR 3177855, DOI 10.1051/m2an/2013117
- Ivo Babuska and Robert Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul. 9 (2011), no. 1, 373–406. MR 2801210, DOI 10.1137/100791051
- Ivo Babuška, Robert Lipton, Paul Sinz, and Michael Stuebner, Multiscale-spectral GFEM and optimal oversampling, Comput. Methods Appl. Mech. Engrg. 364 (2020), 112960, 28. MR 4076862, DOI 10.1016/j.cma.2020.112960
- I. Babuška and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg. 40 (1997), no. 4, 727–758. MR 1429534, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.3.CO;2-E
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Victor M. Calo, Yalchin Efendiev, Juan Galvis, and Guanglian Li, Randomized oversampling for generalized multiscale finite element methods, Multiscale Model. Simul. 14 (2016), no. 1, 482–501. MR 3477310, DOI 10.1137/140988826
- Ke Chen, Qin Li, Jianfeng Lu, and Stephen J. Wright, Randomized sampling for basis function construction in generalized finite element methods, Multiscale Model. Simul. 18 (2020), no. 2, 1153–1177. MR 4116748, DOI 10.1137/18M1166432
- Zhiming Chen and Thomas Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2003), no. 242, 541–576. MR 1954956, DOI 10.1090/S0025-5718-02-01441-2
- Eric T. Chung, Yalchin Efendiev, and Chak Shing Lee, Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul. 13 (2015), no. 1, 338–366. MR 3317373, DOI 10.1137/140970574
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, 1953. MR 65391
- Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016), 383–566. MR 3509211, DOI 10.1017/S0962492916000076
- Alan Demlow, Johnny Guzmán, and Alfred H. Schatz, Local energy estimates for the finite element method on sharply varying grids, Math. Comp. 80 (2011), no. 273, 1–9. MR 2728969, DOI 10.1090/S0025-5718-2010-02353-1
- Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, and Eric Vanden-Eijnden, Heterogeneous multiscale methods: a review, Commun. Comput. Phys. 2 (2007), no. 3, 367–450. MR 2314852
- Weinan E, Pingbing Ming, and Pingwen Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc. 18 (2005), no. 1, 121–156. MR 2114818, DOI 10.1090/S0894-0347-04-00469-2
- Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013), 116–135. MR 3094911, DOI 10.1016/j.jcp.2013.04.045
- Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013), 116–135. MR 3094911, DOI 10.1016/j.jcp.2013.04.045
- Yalchin Efendiev and Thomas Y. Hou, Multiscale finite element methods, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4, Springer, New York, 2009. Theory and applications. MR 2477579
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Pierre Grisvard, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original [ MR0775683]; With a foreword by Susanne C. Brenner. MR 3396210, DOI 10.1137/1.9781611972030.ch1
- Patrick Henning and Axel Målqvist, Localized orthogonal decomposition techniques for boundary value problems, SIAM J. Sci. Comput. 36 (2014), no. 4, A1609–A1634. MR 3240855, DOI 10.1137/130933198
- Thomas Y. Hou and Xiao-Hui Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997), no. 1, 169–189. MR 1455261, DOI 10.1006/jcph.1997.5682
- V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]. MR 1329546, DOI 10.1007/978-3-642-84659-5
- Chupeng Ma, Robert Scheichl, and Tim Dodwell, Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations, SIAM J. Numer. Anal. 60 (2022), no. 1, 244–273. MR 4372648, DOI 10.1137/21M1406179
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- Jens Markus Melenk, On generalized finite-element methods, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–University of Maryland, College Park. MR 2692949
- Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
Bibliographic Information
- Chupeng Ma
- Affiliation: Institute of Scientific Research, Great Bay University, Songshan Lake International Innovation Entrepreneurship Community A5, Dongguan 523000, China
- MR Author ID: 1251608
- Email: chupeng.ma@gbu.edu.cn
- Robert Scheichl
- Affiliation: Institute for Applied Mathematics and Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
- MR Author ID: 661163
- ORCID: 0000-0001-8493-4393
- Email: r.scheichl@uni-heidelberg.de
- Received by editor(s): September 23, 2021
- Received by editor(s) in revised form: March 21, 2022, and April 28, 2022
- Published electronically: July 12, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2539-2569
- MSC (2020): Primary 65M60; Secondary 65N15
- DOI: https://doi.org/10.1090/mcom/3755
- MathSciNet review: 4473096