An algorithm to recognize regular singular Mahler systems
HTML articles powered by AMS MathViewer
- by Colin Faverjon and Marina Poulet;
- Math. Comp. 91 (2022), 2905-2928
- DOI: https://doi.org/10.1090/mcom/3758
- Published electronically: August 1, 2022
- HTML | PDF | Request permission
Abstract:
This paper is devoted to the study of the analytic properties of Mahler systems at $0$. We give an effective characterisation of Mahler systems that are regular singular at $0$, that is, systems which are equivalent to constant ones. Similar characterisations already exist for differential and ($q$-)difference systems but they do not apply in the Mahler case. This work fills in the gap by giving an algorithm which decides whether or not a Mahler system is regular singular at $0$. In particular, it gives an effective characterisation of Mahler systems to which an analog of Schlesinger’s density theorem applies.References
- Boris Adamczewski and Colin Faverjon, Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques, Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 55–90 (French, with English and French summaries). MR 3669933, DOI 10.1112/plms.12038
- B. Adamczewski, C. Faverjon, Mahler’s method in several variables and finite automata, preprint 2020, arXiv:2012.08283 [math.NT], 52p.
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- M.A. Barkatou, On the Reduction of Linear Systems of Difference Equations, Proceedings of ISAAC’89 (1989) 1–6.
- M. A. Barkatou, A rational version of Moser’s algorithm, Proceedings of ISAAC’95, 1995, pp. 297–302.
- Moulay A. Barkatou, Gary Broughton, and Eckhard Pflügel, Regular systems of linear functional equations and applications, ISSAC 2008, ACM, New York, 2008, pp. 15–22. MR 2500368, DOI 10.1145/1390768.1390774
- Jason P. Bell, Michael Coons, and Eric Rowland, The rational-transcendental dichotomy of Mahler functions, J. Integer Seq. 16 (2013), no. 2, Article 13.2.10, 11. MR 3032393
- G.D. Birkhoff, Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc. 74 (1913), 134–139.
- George D. Birkhoff, Formal theory of irregular linear difference equations, Acta Math. 54 (1930), no. 1, 205–246. MR 1555307, DOI 10.1007/BF02547522
- Alin Bostan and Éric Schost, Polynomial evaluation and interpolation on special sets of points, J. Complexity 21 (2005), no. 4, 420–446. MR 2152715, DOI 10.1016/j.jco.2004.09.009
- Manuel Bronstein and Marko Petkovšek, An introduction to pseudo-linear algebra, Theoret. Comput. Sci. 157 (1996), no. 1, 3–33. Algorithmic complexity of algebraic and geometric models (Creteil, 1994). MR 1383396, DOI 10.1016/0304-3975(95)00173-5
- Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba, Computing solutions of linear Mahler equations, Math. Comp. 87 (2018), no. 314, 2977–3021. MR 3834695, DOI 10.1090/mcom/3359
- A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York, 1968, pp. 51–60.
- P. Dumas, Récurrences mahlériennes, suites automatiques, études asymptotiques, Thèse, Université de Bordeaux I, Talence (1993).
- A. Hilali, Solutions formelles de systèmes différentiels linéaires au voisinage d’un point singulier, Thèse de doctorat, Université Joseph-Fourier – Grenoble I, 1987.
- A. Hilali and A. Wazner, Formes super-irréductibles des systèmes différentiels linéaires, Numer. Math. 50 (1987), no. 4, 429–449 (French, with English summary). MR 875167, DOI 10.1007/BF01396663
- Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), no. 1, 342–366 (German). MR 1512537, DOI 10.1007/BF01454845
- Kurt Mahler, Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), no. 1, 573–587 (German). MR 1512638, DOI 10.1007/BF01455711
- Kurt Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), no. 1, 545–585 (German). MR 1545184, DOI 10.1007/BF01194652
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. MR 225972
- Michel Mendès France, Nombres algébriques et théorie des automates, Enseign. Math. (2) 26 (1980), no. 3-4, 193–199 (1981) (French). MR 610520
- Jürgen Moser, The order of a singularity in Fuchs’ theory, Math. Z. 72 (1959/60), 379–398. MR 117375, DOI 10.1007/BF01162962
- Kumiko Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics, vol. 1631, Springer-Verlag, Berlin, 1996. MR 1439966, DOI 10.1007/BFb0093672
- Patrice Philippon, Groupes de Galois et nombres automatiques, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 596–614 (French, with English and French summaries). MR 3431652, DOI 10.1112/jlms/jdv056
- M. Poulet, A density theorem for the difference Galois groups of regular singular Mahler equations, Int. Math. Res. Not. IMRN (2021).
- C. Praagman, The formal classification of linear difference operators, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 2, 249–261. MR 705431, DOI 10.1016/1385-7258(83)90061-6
- Marius van der Put and Michael F. Singer, Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666, Springer-Verlag, Berlin, 1997. MR 1480919, DOI 10.1007/BFb0096118
- Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772, DOI 10.1007/978-3-642-55750-7
- Bernard Randé, Récurrences $2$- et $3$-mahlériennes, J. Théor. Nombres Bordeaux 5 (1993), no. 1, 101–109 (French, with French summary). MR 1251230, DOI 10.5802/jtnb.81
- Julien Roques, On the algebraic relations between Mahler functions, Trans. Amer. Math. Soc. 370 (2018), no. 1, 321–355. MR 3717982, DOI 10.1090/tran/6945
- Julien Roques, On the local structure of Mahler systems, Int. Math. Res. Not. IMRN 13 (2021), 9937–9957. MR 4283570, DOI 10.1093/imrn/rnz349
- Jacques Sauloy, Systèmes aux $q$-différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1021–1071 (French, with English and French summaries). MR 1799737, DOI 10.5802/aif.1784
- Jacques Sauloy, Galois theory of Fuchsian $q$-difference equations, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 6, 925–968 (2004) (English, with English and French summaries). MR 2032530, DOI 10.1016/j.ansens.2002.10.001
- Arne Storjohann, High-order lifting and integrality certification, J. Symbolic Comput. 36 (2003), no. 3-4, 613–648. International Symposium on Symbolic and Algebraic Computation (ISSAC’2002) (Lille). MR 2004044, DOI 10.1016/S0747-7171(03)00097-X
- Wei Zhou, George Labahn, and Arne Storjohann, A deterministic algorithm for inverting a polynomial matrix, J. Complexity 31 (2015), no. 2, 162–173. MR 3305991, DOI 10.1016/j.jco.2014.09.004
Bibliographic Information
- Colin Faverjon
- Affiliation: Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
- MR Author ID: 969708
- Email: faverjon@math.univ-lyon1.fr
- Marina Poulet
- Affiliation: Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
- Email: poulet@math.univ-lyon1.fr
- Received by editor(s): March 2, 2021
- Received by editor(s) in revised form: November 8, 2021, March 21, 2022, and April 19, 2022
- Published electronically: August 1, 2022
- Additional Notes: The work of the first author was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 648132. The work of the second author was carried out within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR)
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2905-2928
- MSC (2020): Primary 39A06, 68W30; Secondary 11B85
- DOI: https://doi.org/10.1090/mcom/3758
- MathSciNet review: 4473107