An algorithm for Hodge ideals
HTML articles powered by AMS MathViewer
- by Guillem Blanco;
- Math. Comp. 91 (2022), 2955-2967
- DOI: https://doi.org/10.1090/mcom/3764
- Published electronically: July 27, 2022
- HTML | PDF | Request permission
Abstract:
We present an algorithm to compute the Hodge ideals (see M. Mustaţă and M. Popa [Mem. Amer. Math. Soc. 262 (2019), pp. v + 80; J. Éc. polytech. Math. 6 (2019), pp. 283–328]) of $\mathbb {Q}$-divisors associated to any reduced effective divisor $D$. The computation of the Hodge ideals is based on an algorithm to compute parts of the $V$-filtration of Kashiwara and Malgrange on $\iota _{+}\mathscr {O}_X(*D)$ and the characterization (see M. Mustaţă and M. Popa [Forum Math. Sigma 8 (2020), p. 41]) of the Hodge ideals in terms of this $V$-filtration. In particular, this gives a new algorithm to compute the multiplier ideals and the jumping numbers of any effective divisor.References
- Daniel Andres, Viktor Levandovskyy, and Jorge Martín Morales, Principal intersection and Bernstein-Sato polynomial of an affine variety, ISSAC 2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2009, pp. 231–238. MR 2742712, DOI 10.1145/1576702.1576735
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 320735
- Christine Berkesch and Anton Leykin, Algorithms for Bernstein-Sato polynomials and multiplier ideals, ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2010, pp. 99–106. MR 2920542, DOI 10.1145/1837934.1837958
- J. Brianson and Ph. Maisonobe, Remarques sur l’idéal de Bernstein associé à des polynômes, Preprint Université de Nice Sophia-Antipolis (2002), no. 650.
- Nero Budur and Morihiko Saito, Multiplier ideals, $V$-filtration, and spectrum, J. Algebraic Geom. 14 (2005), no. 2, 269–282. MR 2123230, DOI 10.1090/S1056-3911-04-00398-4
- W. Decker, G.-M. Greuel, G. Pfister, and H. Schnemann, Singular 4.2.0 — A computer algebra system for polynomial computations, Available at http://www.singular.uni-kl.de, 2021.
- Alberto Castaño Domínguez, Luis Narváez Macarro, and Christian Sevenheck, Hodge ideals of free divisors, Selecta Math. (N.S.) 28 (2022), no. 3, Paper No. 57, 62. MR 4412424, DOI 10.1007/s00029-022-00767-1
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- S.-J. Jung, I.-K. Kim, Y. Yoon, and M. Saito, Hodge ideals and spectrum of isolated hypersurface singularities, arXiv:1904.02453, https://aif.centre-mersenne.org/articles/10.5802/aif.3453/.
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134–142. MR 726425, DOI 10.1007/BFb0099962
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Viktor Levandovskyy, On preimages of ideals in certain non-commutative algebras, Computational commutative and non-commutative algebraic geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, IOS, Amsterdam, 2005, pp. 44–62. MR 2179190
- B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243–267 (French). MR 737934
- Mircea Mustaţă and Mihnea Popa, Hodge ideals, Mem. Amer. Math. Soc. 262 (2019), no. 1268, v+80. MR 4044463, DOI 10.1090/memo/1268
- Mircea Mustaţă and Mihnea Popa, Hodge ideals for $\textbf {Q}$-divisors: birational approach, J. Éc. polytech. Math. 6 (2019), 283–328 (English, with English and French summaries). MR 3959075, DOI 10.5802/jep.94
- Mircea Mustaţă and Mihnea Popa, Hodge filtration, minimal exponent, and local vanishing, Invent. Math. 220 (2020), no. 2, 453–478. MR 4081135, DOI 10.1007/s00222-019-00933-x
- Mircea Mustaţă and Mihnea Popa, Hodge ideals for $\Bbb Q$-divisors, $V$-filtration, and minimal exponent, Forum Math. Sigma 8 (2020), Paper No. e19, 41. MR 4089396, DOI 10.1017/fms.2020.18
- Michael Perlman and Claudiu Raicu, Hodge ideals for the determinant hypersurface, Selecta Math. (N.S.) 27 (2021), no. 1, Paper No. 1, 22. MR 4198526, DOI 10.1007/s00029-020-00616-z
- Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989) (French). MR 1000123, DOI 10.2977/prims/1195173930
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Morihiko Saito, On $b$-function, spectrum and rational singularity, Math. Ann. 295 (1993), no. 1, 51–74. MR 1198841, DOI 10.1007/BF01444876
- Takafumi Shibuta, Algorithms for computing multiplier ideals, J. Pure Appl. Algebra 215 (2011), no. 12, 2829–2842. MR 2811565, DOI 10.1016/j.jpaa.2011.04.002
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566, DOI 10.1007/978-3-662-04112-3
- M. Zhang, Hodge filtration and Hodge ideals for $\mathbb {Q}$-divisors with weighted homogeneous isolated singularities, arXiv:1810.06656, https://www.intlpress.com/ site/pub/pages/journals/items/ajm/content/vols/0025/0005/a002/ index.php?mode=ns.
Bibliographic Information
- Guillem Blanco
- Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- MR Author ID: 1308706
- Email: guillem.blanco@kuleuven.be
- Received by editor(s): November 16, 2021
- Received by editor(s) in revised form: May 24, 2022
- Published electronically: July 27, 2022
- Additional Notes: The author was supported by a Postdoctoral Fellowship of the Research Foundation – Flanders
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 91 (2022), 2955-2967
- MSC (2020): Primary 14F10, 32C38, 14Q20, 32S40
- DOI: https://doi.org/10.1090/mcom/3764
- MathSciNet review: 4473109