Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 91 (2022) are as follows: for paper delivery, US$846.00 list, US$676.80 institutional member, US$761.40 corporate member, US$507.60 individual member; for electronic delivery, US$744.00 list, US$595.20 institutional member, US$669.60 corporate member, US$446.40 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$31 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2022 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index®-Expanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

10 9 8 7 6 5 4 3 2 1 27 26 25 24 23 22
MA*EMATICS OF COMPUTATION

CONTENTS

Vol. 91, No. 338
November 2022

Dong Li, *Why large time-stepping methods for the Cahn-Hilliard equation is stable*
2501

Bo Gong, Jiguang Sun, Tiara Turner, and Chunxiong Zheng, *Finite element/holomorphic operator function method for the transmission eigenvalue problem*
2517

Chupeng Ma and Robert Scheichl, *Error estimates for discrete generalized FEMs with locally optimal spectral approximations*
2539

Johnny Guzmán, Anna Lischke, and Michael Neilan, *Exact sequences on Worsey–Farin splits*
2571

Wansheng Wang and Lijun Yi, *Delay-dependent elliptic reconstruction and optimal \(L^\infty(L^2) \) a posteriori error estimates for fully discrete delay parabolic problems*
2609

Bruno Després, Maria El Ghaoui, and Toni Sayah, *A Trefftz method with reconstruction of the normal derivative applied to elliptic equations*
2645

Assyr Abdulle, Marcus J. Grote, and Giacomo Rosilho de Souza, *Explicit stabilized multirate method for stiff differential equations*
2681

David Krieg, Erich Novak, and Mathias Sonnleitner, *Recovery of Sobolev functions restricted to iid sampling*
2715

Elisenda Feliu and AmirHosein Sadeghimanesh, *Kac-Rice formulas and the number of solutions of parametrized systems of polynomial equations*
2739

Josef Dick, Takashi Goda, and Kosuke Suzuki, *Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate*
2771

Sotirios E. Notaris, *Anti-Gaussian quadrature formulae of Chebyshev type*
2803

Ariel Pacetti and Lucas Villagran Torcomian, *Q-Curves, Hecke characters and some Diophantine equations*
2817

Thomas Rüd, *Explicit Tamagawa numbers for certain algebraic tori over number fields*
2867

Colin Faverjon and Marina Poulet, *An algorithm to recognize regular singular Mahler systems*
2905

James Rickards, *Improved computation of fundamental domains for arithmetic Fuchsian groups*
2929

Guillem Blanco, *An algorithm for Hodge ideals*
2955

Sandra Di Rocco, David Eklund, and Oliver Gåfvert, *Sampling and homology via bottlenecks*
2969
INDEX TO VOLUME 91 (2022)

Abdulle, Assyr, Marcus J. Grote, and Giacomo Rosilho de Souza. Explicit stabilized multirate method for stiff differential equations, 2681
Abreu, Alex, Sally Andria, and Marco Pacini. Abel maps for nodal curves via tropical geometry, 1971
Akgün, Ö., M. Mereb, and L. Vendramin. Enumeration of set-theoretic solutions to the Yang–Baxter equation, 1469
Amzallag, Eli, Andrei Minchenko, and Gleb Pogudin. Degree bound for toric envelope of a linear algebraic group, 1501
Andria, Sally. See Abreu, Alex
Angelini, Elena, and Luca Chiantini. Minimality and uniqueness for decompositions of specific ternary forms, 973
Asif, Sualeh, Francesc Fité, and Dylan Pentland, contributor A. V. Sutherland. Computing L-polynomials of Picard curves from Cartier–Manin matrices, 943
Audet, Charles. See Bingane, Christian
Banjai, Lehel, and Charalambos G. Makridakis. A posteriori error analysis for approximations of time-fractional subdiffusion problems, 1711
Bao, Weizhu, Yue Feng, and Chunmei Su. Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein–Gordon equation with weak nonlinearity, 811
Barakat, Mohamed, and Markus Lange-Hegermann. An algorithmic approach to Chevalley’s Theorem on images of rational morphisms between affine varieties, 451
Barbulescu, Razvan, and Sudarshan Shinde. A classification of ECM-friendly families of elliptic curves using modular curves, 1405
Bazan, Erick Rodriguez. See Hubert, Evelyne
Beltrán, Carlos, Laurent Bétermin, Peter Grabner, and Stefan Steinerberger. How well-conditioned can the eigenvector problem be?, 1237
Bender, Matías R., and Simon Telen. Toric eigenvalue methods for solving sparse polynomial systems, 2397
Benoit, Antoine. Stability of finite difference schemes approximation for hyperbolic boundary value problems in an interval, 1171
Bétermin, Laurent. See Beltrán, Carlos
Bingane, Christian, and Charles Audet. The equilateral small octagon of maximal width, 2027
Blanco, Guillel. An algorithm for Hodge ideals, 2955
Blanes, S., F. Casas, P. Chartier, and A. Escorihuela-Tomàs. On symmetric-conjugate composition methods in the numerical integration of differential equations, 1739
Bringmann, Kathrin, and Ben Kane. Class numbers and representations by ternary quadratic forms with congruence conditions, 295
Brinkmann, Gunnar, Jan Goedgebeur, and Brendan D. McKay. The minimality of the Georges–Kelmans graph, 1483
Calvo, María Cabrera, Frédéric Rousset, and Katharina Schratz. Time integrators for dispersive equations in the long wave regime, 2197
Cangiani, Andrea, Zhaonan Dong, and Emmanuil H. Georgoulis. hp-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements, 1
Carrillo, José A. See Gutleb, Timon S.
Carstensen, Carsten, and Stefan A. Sauter. Crouzeix–Raviart triangular elements are inf-sup stable, 2041
Casas, F. See Blanes, S.
Chada, Neil K., and Xin T. Tong. Convergence acceleration of ensemble Kalman inversion in nonlinear settings, 1247
Chartier, P. See Blanes, S.
Chartier, Philippe, Mohammed Lemou, and Léopold Trémant. A uniformly accurate numerical method for a class of dissipative systems, 843
Chaumont-Frétet, T., A. Ern, and M. Vohralík. Stable broken H(curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem, 37
Chen, Long, and Xuehai Huang. Finite elements for divdiv conforming symmetric tensors in three dimensions, 1107
Chen, Long. A finite element elasticity complex in three dimensions, 2009
Chen, Swaine L., and Nico M. Temme. *A distribution function from population genetics statistics using Stirling numbers of the first kind: Asymptotics, inversion and numerical evaluation*, 871

Chen, Xiaojun. *See* Li, Chao

Chiantini, Luca. *See* Angelini, Elena

Cohn, Henry, and Nicholas Triantafillou. *Dual linear programming bounds for sphere packing via modular forms*, 491

Cui, Jianbo, Luca Dieci, and Haomin Zhou. *Time discretizations of Wasserstein–Hamiltonian flows*, 1019

Cui, Jianbo, Jialin Hong, and Derui Sheng. *Density function of numerical solution of splitting AVF scheme for stochastic Langevin equation*, 2283

Cui, Tiangang. *See* Zahm, Olivier

Dahmen, Wolfgang, Rob Stevenson, and Jan Westerdip. *Accuracy controlled data assimilation for parabolic problems*, 557

Dembélé, Lassina. *On the existence of abelian surfaces with everywhere good reduction*, 1381

Desprès, Bruno, Maria El Ghaoui, and Toni Sayah. *A Trefftz method with reconstruction of the normal derivative applied to elliptic equations*, 2645

Di Rocco, Sandra, David Eklund, and Oliver Gafvert. *Sampling and homology via bottlenecks*, 2969

Dick, Josef, Takashi Goda, and Kosuke Suzuki. *Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate*, 2771

Dieci, Luca. *See* Cui, Jianbo

Doerr, Benjamin. *A sharp discrepancy bound for jittered sampling*, 1871

Dong, Zhaonan. *See* Cangiani, Andrea

Dörich, Benjamin, and Jan Leibold. *Full discretization error analysis of exponential integrators for semilinear wave equations*, 1687

Drake, Dow, Jay Gopalakrishnan, Joachim Schöberl, and Christoph Wintersteiger. *Convergence analysis of some tent-based schemes for linear hyperbolic systems*, 699

Eklund, David. *See* Di Rocco, Sandra

El Ghaoui, Maria. *See* Desprès, Bruno

Ern, A. *See* Chaumont-Frelet, T.

Ernvall-Hytyinen, Anne-Maria, and Neea Palojärvi. *Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis*, 1317

Escorihuela-Tomás, A. *See* Blanes, S.

Faverjon, Colin, and Marina Poulet. *An algorithm to recognize regular singular Mahler systems*, 2905

Feireisl, Eduard, Mária Lukáčová-Medviďová, Simon Schneider, and Bangwei She. *Approximating viscosity solutions of the Euler system*, 2129

Feischl, Michael. *Inf-sup stability implies quasi-orthogonality*, 2059

Feliu, Elisenda, and AmirHosein Sadeghimanesh. *Kac-Rice formulas and the number of solutions of parametrized systems of polynomial equations*, 2739

Feng, Yue. *See* Bao, Weizhu

Fité, Francesc. *See* Asif, Sualch

Frei, Christopher, and Rodolphe Richard. *Constructing abelian extensions with prescribed norms*, 381

Führer, Thomas. *Multilevel decompositions and norms for negative order Sobolev spaces*, 183

Gafvert, Oliver. *See* Di Rocco, Sandra

Garde, Henrik, and Nuutti Hyvönen. *Series reversion in Calderón’s problem*, 1925

Georgoulis, Emmanuil H. *See* Cangiani, Andrea

Goda, Takashi. *See* Dick, Josef

Goedgebeur, Jan. *See* Brinkmann, Gunnar
Gong, Bo, Jiguang Sun, Tiara Turner, and Chunxiong Zheng. *Finite element/holomorphic operator function method for the transmission eigenvalue problem*, 2517

Gopalakrishnan, Jay. *See* Drake, Dow

Grabner, Peter. *See* Beltrán, Carlos

Grote, Marcus J. *See* Abdulle, Assyr

Gutleb, Timon S., José A. Carrillo, and Sheehan Olver. *Computing equilibrium measures with power law kernels*, 2247

Guzmán, Johnny, Anna Lischke, and Michael Neilan. *Exact sequences on Worsey–Farin splits*, 2571

Haberstich, Cécile, Anthony Nouy, and Guillaume Perrin. *Boosted optimal weighted least-squares*, 1281

Harvey, David, and Markus Hittmeir. *A log-log speedup for exponent one-fifth deterministic integer factorisation*, 1367

Hasanalizade, Elchin, Quanli Shen, and Peng-Jie Wong. *Counting zeros of Dedekind zeta functions*, 277

Henning, Patrick, and Johan Wärnegård. *Superconvergence of time invariants for the Gross–Pitaevskii equation*, 509

Hittmeir, Markus. *See* Harvey, David

Hong, Jinlin. *See* Cui, Jianbo

Hong, Qingguo, Yuwen Li, and Jinchao Xu. *An extended Galerkin analysis infinite element exterior calculus*, 1077

Hornik, Kurt. *See* Sablica, Lukas

Hoshi, Akinari, Kazuki Kanai, and Aiichi Yamashita. *Norm one Tori and Hasse norm principle*, 2431

Hu, Jun, and Limin Ma. *Asymptotic expansions of eigenvalues by both the Crouzeix–Raviart and enriched Crouzeix–Raviart elements*, 75

Huang, Xuehai. *See* Chen, Long

Hubert, Evelyne, and Erick Rodriguez Bazan. *Algorithms for fundamental invariants and equivariants of finite groups*, 2459

Hulte, Alexander. *The perfect groups of order up to two million*, 1007

Hyvönen, Nuutti. *See* Garde, Henrik

Jarso, Tamiru, and Tim Trudgian. *Four consecutive primitive elements in a finite field*, 1521

Jorgenson, Jay, Lejla Smajlović, and Holger Then. *An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative*, 331

Kaltenbacher, Barbara, and William Rundell. *On an inverse problem of nonlinear imaging with fractional damping*, 245

Kanai, Kazuki. *See* Hoshi, Akinari

Kane, Ben. *See* Bringmann, Kathrin

Kaya, Enis. *Explicit Vologodsky integration for hyperelliptic curves*, 2367

Khan, Arbaz, and Pietro Zanotti. *A nonsymmetric approach and a quasi-optimal and robust discretization for the Biot’s model*, 1143

Kirschmer, Markus, Fabien Narbonne, Christophe Ritzenthaler, and Damien Robert. *Spanning the isogeny class of a power of an elliptic curve*, 401

Krieg, David, Erich Novak, and Mathias Sonnleitner. *Recovery of Sobolev functions restricted to tid sampling*, 2715

Kuo, Frances Y. *See* Gilbert, Alexander D.

Lange-Hegermann, Markus. *See* Barakat, Mohamed

Lauder, Alan, and Jan Vonk. *Computing p-adic L-functions of totally real fields*, 921

Law, Kody. *See* Zahm, Olivier

Lee, Ethan S. *See* Cully-Hugill, Michaela

Leibold, Jan. *See* Dörich, Benjamin

Lemou, Mohammed. *See* Chartier, Philippe

Li, Bu Yang. *Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh*, 1533

Li, Chao, and Xiaojun Chen. *Isotropic non-Lipschitz regularization for sparse representations of random fields on the sphere*, 219

Li, Dong. *Why large time-stepping methods for the Cahn–Hilliard equation is stable*, 2501
Li, Dong, Chaoyu Quan, and Tao Tang. Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation, 785

Li, Wenbo, and Ricardo H. Nochetto. Two-scale methods for convex envelopes, 111

Li, Xiaoli, Jie Shen, and Zhengguang Liu. New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis, 141

Li, Yuwen. See Hong, Qingguo

Liang, Qigang, and Xuejun Xu. A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem, 623

Lischke, Anna. See Guzmán, Johnny

Liu, Chen. See Masri, Rami

Liu, Zhengguang. See Li, Xiaoli

Lu, Shuai, and Peter Mathé. Stochastic gradient descent for linear inverse problems in Hilbert spaces, 1763

Lukáčová-Medviďová, Máriá. See Feireisl, Eduard

Ma, Chupeng, and Robert Scheichl. Error estimates for discrete generalized FEMs with locally optimal spectral approximations, 2539

Ma, Limin. See Hu, Jun

Maier, Roland, and Barbara Verfürth. Multiscale scattering in nonlinear Kerr-type media, 1655

Makridakis, Charalambos G. See Banjai, Lehel

Marques, Diego, and Pavel Trojovský. Error estimates for a class of continuous Bonse-type inequalities, 2335

Marzouk, Youssuf. See Zahm, Olivier

Masri, Rami, Chen Liu, and Beatrice Riviere. A discontinuous Galerkin pressure correction scheme for the incompressible Navier–Stokes equations: Stability and convergence, 1625

Mathé, Peter. See Lu, Shuai

McKay, Brendan D. See Brinkmann, Gunnar

Melenk, Jens Markus. See Rieder, Alexander

Mereb, M. See Akgün, Ö.

Minchenko, Andrei. See Amzallag, Eli

Narbonne, Fabien. See Kirschmer, Markus

Neilan, Michael. See Guzmán, Johnny

Nochetto, Ricardo H. See Li, Wenbo

Notaris, Sotirios E. Anti-Gaussian quadrature formulae of Chebyshev type, 2803

Nouy, Anthony. See Haberstich, Cécile

Novak, Erich. See Krieg, David

Olver, Sheehan. See Gutleb, Timon S.

Orozco, Pablo Alexei Gacza. See Farrell, Patrick

Ostermann, Alexander, Frédéric Rousset, and Katharina Schratz. Error estimates at low regularity of splitting schemes for NLS, 169

Pacetti, Ariel, and Lucas Villagra Torcomian. Q-Curves, Hecke characters and some Diophantine equations, 2817

Pacini, Marco. See Abreu, Alex

Pagani, Lorenzo. Greenberg’s conjecture for real quadratic fields and the cyclotomic Z2-extensions, 1437

Palojärvi, Neea. See Ernvall-Hytönen, Anne-Maria

Pentland, Dylan. See Asif, Sualeh

Perrin, Guillaume. See Haberstich, Cécile

Pogudin, Gleb. See Amzallag, Eli

Poulet, Marina. See Favéron, Colin

Quan, Chaoyu. See Li, Dong

Quesada-Herrera, Oscar E. On the q-analogue of the Pair Correlation Conjecture via Fourier optimization, 2347

Reusken, Arnold. Analysis of finite element methods for surface vector-Laplace eigenproblems, 1587

Richard, Rodolphe. See Frei, Christopher

Rickards, James. Improved computation of fundamental domains for arithmetic Fuchsian groups, 2929

Ritzenthaler, Christophe. *See* Kirschmer, Markus

Riviere, Beatrice. *See* Masri, Rami

Robert, Damien. *See* Kirschmer, Markus

Rosenfeld, Matthieu. *Avoiding squares over words with lists of size three amongst four symbols*, 2489

Rousset, Frédéric. *See* Calvo, María Cabrera

Rüd, Thomas. *Explicit Tamagawa numbers for certain algebraic tori over number fields*, 2867

Rundell, William. *See* Kaltenbacher, Barbara

Sablica, Lukas, and Kurt Hornik. *On bounds for Kummer’s function ratio*, 887

Sadeghimanesh, AmirHosein. *See* Feliu, Elisenda

Saouter, Yannick. *New results for witnesses of Robin’s criterion*, 909

Sauter, Stefan A. *See* Carstensen, Carsten

Sayah, Toni. *See* Després, Bruno

Sayas, Francisco–Javier. *See* Rieder, Alexander

Scheichl, Robert. *See* Ma, Chupeng

Schneider, Simon. *See* Feireisl, Eduard

Schöberl, Joachim. *See* Drake, Dow

Schratz, Katharina. *See* Calvo, María Cabrera

Scott, L. Ridgway. *See* Gjerde, Ingeborg G.

She, Bangwei. *See* Feireisl, Eduard

Shen, Jie. *See* Li, XiaoLi

Shen, Quanli. *See* Hasanalizade, Elchin

Sheng, Derui. *See* Cui, Jianbo

Shinde, Sudarshan. *See* Barbulescu, Razvan

Sloan, Ian H. *See* Gilbert, Alexander D.

Smajlović, Lejla. *See* Jorgenson, Jay

Sonntag, Mathias. *See* Krieg, David

de Souza, Giacomo Rosilho. *See* Abdulle, Assyr

Spantini, Alessio. *See* Zahn, Olivier

Steinberger, Stefan. *See* Beltrán, Carlos

Stephenson, Rob. *See* Dahmen, Wolfgang

Su, Chunmei. *See* Bao, Weizhu

Süli, Endre. *See* Farrell, Patrick

Sun, Jiguang. *See* Gong, Bo

Sutherland, A. V. *See* Asif, Sualeh

Suzuki, Kosuke. *See* Dick, Josef

Tang, Tao. *See* Li, Dong

Telen, Simon. *See* Bender, Matías R.

Temme, Nico M. *See* Chen, Swaine L.

Then, Holger. *See* Jorgenson, Jay

Tong, Xin T. *See* Chada, Neil K.

Torcomian, Lucas Villagra. *See* Pacetti, Ariel

Trémant, Léopold. *See* Chartier, Philippe

Triantafillou, Nicholas. *See* Cohn, Henry

Trojovsky, Pavel. *See* Marques, Diego

Trudgian, Tim. *See* Jarso, Tamiru

Turner, Tiara. *See* Gong, Bo

Vendramin, L. *See* Akgün, O.

Verfürth, Barbara. *See* Maiar, Roland

Vohralík, M. *See* Chaumont-Frelet, T.

Vonk, Jan. *See* Lauder, Alan

Wang, Jihong, Jiwei Zhang, and Chunjiong Zheng. *Stability and error analysis for a second-order approximation of 1D nonlocal Schrödinger equation under DtN-type boundary conditions*, 761
Wang, Wansheng, and Lijun Yi. *Delay-dependent elliptic reconstruction and optimal $L^\infty(L^2)$ a posteriori error estimates for fully discrete delay parabolic problems*, 2609

Wang, Yan, and Xiaofei Zhao. *A symmetric low-regularity integrator for nonlinear Klein-Gordon equation*, 2215

Wang, Yinkun, and Shuhuang Xiang. *Fast and stable augmented Levin methods for highly oscillatory and singular integrals*, 1893

Wärnegård, Johan. See Henning, Patrick

Westerdiep, Jan. See Dahmen, Wolfgang

Wintersteiger, Christoph. See Drake, Dow

Wong, Peng-Jie. See Hasanalizade, Elchin

Wu, Yifei, and Fangyan Yao. *A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity*, 1213

Xiang, Shuhuang. See Wang, Yinkun

Xu, Jinchao. See Hong, Qingguo

Xu, Xuejun. See Liang, Qigang

Yamasaki, Aiichi. See Hoshi, Akinari

Yao, Fangyan. See Wu, Yifei

Yi, Lijun. See Wang, Wansheng

Zahm, Olivier, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk. *Certified dimension reduction in nonlinear Bayesian inverse problems*, 1789

Zanotti, Pietro. See Khan, Arbaz

Zhang, Jiwei. See Wang, Jihong

Zhao, Weifeng. *Strictly convex entropy and entropy stable schemes for reactive Euler equations*, 735

Zhao, Xiaofei. See Wang, Yan

Zheng, Chunxiong. See Gong, Bo

Zhou, Haomin. See Cui, Jianbo
Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 91 (2022) are as follows: for paper delivery, US$846.00 list, US$676.80 institutional member, US$761.40 corporate member, US$507.60 individual member; for electronic delivery, US$744.00 list, US$595.20 institutional member, US$669.60 corporate member, US$446.40 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$31 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 849904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2022 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index®-Expanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Andrea Cangiani, Zhaonan Dong, and Emmanuil H. Georgoulis, *hp*-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements .. 1

T. Chaumont-Frelet, A. Ern, and M. Vohralík, Stable broken $H(\text{curl})$ polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem 37

Jun Hu and Limin Ma, Asymptotic expansions of eigenvalues by both the Crouzeix–Raviart and enriched Crouzeix–Raviart elements 75

Wenbo Li and Ricardo H. Nochetto, Two-scale methods for convex envelopes ... 111

Xiaoli Li, Jie Shen, and Zhengguang Liu, New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis . 141

Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Error estimates at low regularity of splitting schemes for NLS 169

Thomas Führer, Multilevel decompositions and norms for negative order Sobolev spaces ... 183

Chao Li and Xiaojun Chen, Isotropic non-Lipschitz regularization for sparse representations of random fields on the sphere 219

Barbara Kaltenbacher and William Rundell, On an inverse problem of nonlinear imaging with fractional damping 245

Elchin Hasanalizade, Quanli Shen, and Peng-Jie Wong, Counting zeros of Dedekind zeta functions .. 277

Kathrin Bringmann and Ben Kane, Class numbers and representations by ternary quadratic forms with congruence conditions 295

Jay Jorgenson, Lejla Smajlović, and Holger Then, An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative ... 331

Christopher Frei and Rodolphe Richard, Constructing abelian extensions with prescribed norms .. 381

Markus Kirschmer, Fabien Narbonne, Christophe Ritzenthaler, and Damien Robert, Spanning the isogeny class of a power of an elliptic curve ... 401

Mohamed Barakat and Markus Lange-Hegermann, An algorithmic approach to Chevalley’s Theorem on images of rational morphisms between affine varieties .. 451

Henry Cohn and Nicholas Triantafillou, Dual linear programming bounds for sphere packing via modular forms 491
Patrick Henning and Johan Wärnegård, Superconvergence of time invariants for the Gross–Pitaevskii equation ... 509
Wolfgang Dahmen, Rob Stevenson, and Jan Westerdiep, Accuracy controlled data assimilation for parabolic problems ... 557
Ingeborg G. Gjerde and L. Ridgway Scott, Nitsche’s method for Navier–Stokes equations with slip boundary conditions 597
Qigang Liang and Xuejun Xu, A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem 623
Patrick Farrell, Pablo Alexei Gazca Orozco, and Endre Süli, Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids 659
Dow Drake, Jay Gopalakrishnan, Joachim Schöberl, and Christoph Wintersteiger, Convergence analysis of some tent-based schemes for linear hyperbolic systems ... 699
Weifeng Zhao, Strictly convex entropy and entropy stable schemes for reactive Euler equations ... 735
Jihong Wang, Jiwei Zhang, and Chunxiong Zheng, Stability and error analysis for a second-order approximation of 1D nonlocal Schrödinger equation under DtN-type boundary conditions ... 761
Dong Li, Chaoyu Quan, and Tao Tang, Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation 785
Weizhu Bao, Yue Feng, and Chunmei Su, Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein–Gordon equation with weak nonlinearity 811
Philippe Chartier, Mohammed Lemou, and Léopold Trémant, A uniformly accurate numerical method for a class of dissipative systems 843
Swaine L. Chen and Nico M. Temme, A distribution function from population genetics statistics using Stirling numbers of the first kind: Asymptotics, inversion and numerical evaluation 871
Lukas Sablica and Kurt Hornik, On bounds for Kummer’s function ratio 887
Yannick Saouter, New results for witnesses of Robin’s criterion 909
Alan Lauder and Jan Vonk, Computing p-adic L-functions of totally real fields ... 921
Sualeh Asif, Francesc Fité, and Dylan Pentland, contributor A. V. Sutherland, Computing L-polynomials of Picard curves from Cartier–Manin matrices ... 943
Elena Angelini and Luca Chiantini, Minimality and uniqueness for decompositions of specific ternary forms 973
Alexander Hulpke, The perfect groups of order up to two million 1007

Jianbo Cui, Luca Dieci, and Haomin Zhou, Time discretizations of Wasserstein–Hamiltonian flows ... 1019
Qingguo Hong, Yuwen Li, and Jinchao Xu, An extended Galerkin analysis infinite element exterior calculus 1077
Long Chen and Xuehai Huang, Finite elements for divdiv conforming symmetric tensors in three dimensions 1107
Arbaz Khan and Pietro Zanotti, A nonsymmetric approach and a quasi-optimal and robust discretization for the Biot’s model 1143
Antoine Benoît, Stability of finite difference schemes approximation for hyperbolic boundary value problems in an interval 1171
Yifei Wu and Fangyan Yao, A first-order Fourier integrator for the nonlinear Schrödinger equation on T without loss of regularity 1213
Carlos Beltrán, Laurent Bétermin, Peter Grabner, and Stefan Steinerberger, How well-conditioned can the eigenvector problem be? 1237
Neil K. Chada and Xin T. Tong, Convergence acceleration of ensemble Kalman inversion in nonlinear settings 1247
Cécile Haberstich, Anthony Nouy, and Guillaume Perrin, Boosted optimal weighted least-squares .. 1281
Anne-Maria Ernvall-Hytonen and Neea Palojärvi, Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis .. 1317
David Harvey and Markus Hittmeir, A log-log speedup for exponent one-fifth deterministic integer factorisation 1367
Lassina Dembélé, On the existence of abelian surfaces with everywhere good reduction ... 1381
Razvan Barbulescu and Sudarshan Shinde, A classification of ECM-friendly families of elliptic curves using modular curves 1405
Lorenzo Pagani, Greenberg’s conjecture for real quadratic fields and the cyclotomic \mathbb{Z}_2-extensions ... 1437
Ö. Akgün, M. Mereb, and L. Vendramin, Enumeration of set-theoretic solutions to the Yang–Baxter equation 1469
Gunnar Brinkmann, Jan Goedgebeur, and Brendan D. McKay, The minimality of the Georges–Kelmans graph 1483
Eli Amzallag, Andrei Minchenko, and Gleb Pogudin, Degree bound for toric envelope of a linear algebraic group 1501
Tamiru Jarso and Tim Trudgian, Four consecutive primitive elements in a finite field ... 1521

Vol. 91, No. 336 July 2022

Buyang Li, Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh . 1533
Arnold Reusken, Analysis of finite element methods for surface vector-Laplace eigenproblems .. 1587
Rami Masri, Chen Liu, and Beatrice Riviere, A discontinuous Galerkin pressure correction scheme for the incompressible Navier-Stokes equations: Stability and convergence ... 1625
Roland Maier and Barbara Verfürth, Multiscale scattering in nonlinear Kerr-type media .. 1655
Benjamin Dörich and Jan Leibold, Full discretization error analysis of exponential integrators for semilinear wave equations 1687
Lehel Banjai and Charalambos G. Makridakis, A posteriori error analysis for approximations of time-fractional subdiffusion problems . . 1711
S. Blanes, F. Casas, P. Chartier, and A. Escorihuela-Tomás, On symmetric-conjugate composition methods in the numerical integration of differential equations ... 1739
Shuai Lu and Peter Mathé, Stochastic gradient descent for linear inverse problems in Hilbert spaces .. 1763
Olivier Zahm, Tiangang Cui, Kody Law, Alessio Spantini, and Youssef Marzouk, Certified dimension reduction in nonlinear Bayesian inverse problems .. 1789
Alexander D. Gilbert, Frances Y. Kuo, and Ian H. Sloan, Equivalence between Sobolev spaces of first-order dominating mixed smoothness and unanchored ANOVA spaces on R^d 1837
Benjamin Doerr, A sharp discrepancy bound for jitted sampling 1871
Yinkun Wang and Shuhuang Xiang, Fast and stable augmented Levin methods for highly oscillatory and singular integrals 1893
Henrik Garde and Nuutti Hyvönen, Series reversion in Calderón’s problem ... 1925
Michaela Cully-Hugill and Ethan S. Lee, Explicit interval estimates for prime numbers ... 1955
Alex Abreu, Sally Andria, and Marco Pacini, Abel maps for nodal curves via tropical geometry .. 1971
Christian Bingane and Charles Audet, The equilateral small octagon of maximal width .. 2027

Carsten Carstensen and Stefan A. Sauter, Crouzeix-Raviart triangular elements are inf-sup stable .. 2041
Michael Feischl, Inf-sup stability implies quasi-orthogonality 2059
Long Chen and Xuehai Huang, A finite element elasticity complex in three dimensions ... 2095
Eduard Feireisl, Mária Lukáčová-Medvid’ová, Simon Schneider, and Bangwei She, Approximating viscosity solutions of the Euler system ... 2129
Alexander Rieder, Francisco–Javier Sayas, and Jens Markus Melenk, Time domain boundary integral equations and convolution quadrature for scattering by composite media 2165
María Cabrera Calvo, Frédéric Rousset, and Katharina Schratz, Time integrators for dispersive equations in the long wave regime .. 2197
Yan Wang and Xiaofei Zhao, A symmetric low-regularity integrator for nonlinear Klein-Gordon equation 2215
Timon S. Gutleb, José A. Carrillo, and Sheehan Olver, Computing equilibrium measures with power law kernels ... 2247
Jianbo Cui, Jialin Hong, and Derui Sheng, Density function of numerical solution of splitting AVF scheme for stochastic Langevin equation 2283
Diego Marques and Pavel Trojovský, Error estimates for a class of continuous Bonse-type inequalities .. 2335
Oscar E. Quesada-Herrera, On the q-analogue of the Pair Correlation Conjecture via Fourier optimization ... 2347
Enis Kaya, Explicit Vologodsky integration for hyperelliptic curves 2367
Matías R. Bender and Simon Telen, Toric eigenvalue methods for solving sparse polynomial systems ... 2397
Akinari Hoshi, Kazuki Kanai, and Aiichi Yamasaki, Norm one Tori and Hasse norm principle .. 2431
Evelyne Hubert and Erick Rodriguez Bazan, Algorithms for fundamental invariants and equivariants of finite groups 2459
Matthieu Rosenfeld, Avoiding squares over words with lists of size three amongst four symbols ... 2489

Vol. 91, No. 338 November 2022

Dong Li, Why large time-stepping methods for the Cahn-Hilliard equation is stable ... 2501
Bo Gong, Jiguang Sun, Tiara Turner, and Chunxiong Zheng, Finite element/holomorphic operator function method for the transmission eigenvalue problem ... 2517
Chupeng Ma and Robert Scheichl, Error estimates for discrete generalized FEMs with locally optimal spectral approximations 2539
Johnny Guzmán, Anna Lischke, and Michael Neilan, Exact sequences on Worsey–Farin splits ... 2571
Wansheng Wang and Lijun Yi, Delay-dependent elliptic reconstruction and optimal $L^\infty(L^2)$ a posteriori error estimates for fully discrete delay parabolic problems .. 2609
Bruno Després, Maria El Ghaioui, and Toni Sayah, A Trefftz method with reconstruction of the normal derivative applied to elliptic equations 2645
Assyr Abdulle, Marcus J. Grote, and Giacomo Rosilho de Souza, Explicit stabilized multirate method for stiff differential equations 2681
David Krieg, Erich Novak, and Mathias Sonneleitner, Recovery of Sobolev functions restricted to iid sampling 2715
Elisenda Feliu and AmirHosein Sadeghimanesh, Kac-Rice formulas and the number of solutions of parametrized systems of polynomial equations ... 2739
Josef Dick, Takashi Goda, and Kosuke Suzuki, Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate .. 2771
Sotirios E. Notaris, Anti-Gaussian quadrature formulae of Chebyshev type 2803
Ariel Pacetti and Lucas Villagra Torcomian, Q-Curves, Hecke characters and some Diophantine equations ... 2817
Thomas Rüd, Explicit Tamagawa numbers for certain algebraic tori over number fields .. 2867
Colin Faverjon and Marina Poulet, An algorithm to recognize regular singular Mahler systems ... 2905
James Rickards, Improved computation of fundamental domains for arithmetic Fuchsian groups ... 2929
Guillem Blanco, An algorithm for Hodge ideals ... 2955
Sandra Di Rocco, David Eklund, and Oliver Gätvert, Sampling and homology via bottlenecks .. 2969
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are electronically published on the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2213 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. Manuscripts should be electronically prepared in \LaTeX. To this end, the Society has prepared \LaTeX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \LaTeX style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web.

Authors may retrieve an author package for Mathematics of Computation from www.ams.org/mcom/mcomauthorpac.html. The AMS Author Handbook is available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When requesting an author package, please specify the publication in which your paper will appear. Please be sure to include your complete email address.
After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

AMS policy on making changes to articles after publication. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually published to the AMS website, changes cannot be made in place in the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is electronically published.

Corrections of critical errors may be made to the paper by submitting an errata article to the Editor. The errata article will be published electronically, will appear in a future print issue, and will link back and forth on the Web with the original article.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.
Editorial Committee

SUSANNE C. BRENNER, Chair, Center for Computation & Technology and Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: mathcomp@math.lsu.edu

MICHAEL J. MOSSINGHOFF, Center for Communications Research, 805 Bunn Dr., Princeton, NJ 08540 USA; E-mail: m.mossinghoff@idaccr.org

MICHAEL J. NEILAN, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 USA; E-mail: neilan@pitt.edu

DANIEL B. SZYLD, Department of Mathematics 038-16, Temple University, 638 Wachman, 1805 N. Broad St. Philadelphia, PA 19122-6094 USA; E-mail: szyld@temple.edu

Board of Associate Editors

PAOLA F. ANTONIETTI, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; E-mail: paola.antonietti@polimi.it

MARKUS BACHMAYR, Institut für Mathematik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany; E-mail: bachmayr@uni-mainz.de

JENNIFER BALAKRISHNAN, Department of Mathematics and Statistics, Boston University, 11 Cummington Mall, Boston, MA 02215 USA; E-mail: jbalaa@bu.edu

ERNESTO G. BIRGIN, Department of Computer Science, University of São Paulo, Rua de Matão, São Paulo - SP 05508-090, Brazil; E-mail: ebingrin@ime.usp.br

MARTIN BURGER, Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany; E-mail: martin.burger@fau.de

CORALIA CARTIS, Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, England; E-mail: Coralia.Cartis@maths.ox.ac.uk

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.coools@cs.kuleuven.ac.be

ALAN DEMLOW, Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843 USA; E-mail: demlow@math.tamu.edu

BRUNO DESPRES, University of Paris VI, Laboratory Jacques-Louis Lions, 175 rue du Chevaleret, 75013 Paris, France; E-mail: despres@ljll.math.upmc.fr

ALICIA DICKENSTEIN, Departamento de Matemática, FCEN, University of Buenos Aires, Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina; E-mail: alidick@dm.uba.ar

JAN DRAISMA, Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern Switzerland; E-mail: jan.draisma@math.unibe.ch

QING DU, Columbia University, 500 W 120th Street, APAM, 200 Mudd, MC 4701, New York, NY 10027 USA; E-mail: qd2125@columbia.edu

BETTINA EICK, Institut Computational Mathematics, University of Braunschweig, 38106 Braunschweig, Germany; E-mail: beick@tu-bs.de

HOWARD C. ELMAN, Department of Computer Science, University of Maryland, College Park, MD 20742 USA; E-mail: elman@cs.umd.edu

KEVIN HARE, Department of Pure Mathematics, University of Waterloo, 200 University Ave. W, Waterloo ON N2L 3G1, Canada; E-mail: kghare@uwaterloo.ca

RALF HIPTMAIR, Department of Mathematics, Seminar of Applied Mathematics, ETH Zurich, CH-8092 Zurich, Switzerland. E-mail: hiptmair@sam.math.ethz.ch

FRANCES KUO, University of New South Wales, School of Mathematics, Sydney NSW 2052, Australia; E-mail: f.kuo@unsw.edu.au

BUYANG LI, Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong; E-mail: buyang.li@polyu.edu.hk

CHRISTIAN LUBICH, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany; E-mail: lubich@na.uni-tuebingen.de
Dong Li, Why large time-stepping methods for the Cahn-Hilliard equation is stable ... 2501
Bo Gong, Jiguang Sun, Tiara Turner, and Chunxiong Zheng, Finite element/holomorphic operator function method for the transmission eigenvalue problem ... 2517
Chupeng Ma and Robert Scheichl, Error estimates for discrete generalized FEMs with locally optimal spectral approximations 2539
Johnny Guzmán, Anna Lischke, and Michael Neilan, Exact sequences on Worsey–Farin splits ... 2571
Wansheng Wang and Lijun Yi, Delay-dependent elliptic reconstruction and optimal $L^\infty(L^2)$ a posteriori error estimates for fully discrete delay parabolic problems ... 2609
Bruno Després, Maria El Ghaoui, and Toni Sayah, A Trefftz method with reconstruction of the normal derivative applied to elliptic equations .. 2645
Assyr Abdulle, Marcus J. Grote, and Giacomo Rosilho de Souza, Explicit stabilized multirate method for stiff differential equations ... 2681
David Krieg, Erich Novak, and Mathias Sonnleitner, Recovery of Sobolev functions restricted to iid sampling 2715
Elisenda Feliu and Amir Hosein Sadeghimanesh, Kac-Rice formulas and the number of solutions of parametrized systems of polynomial equations ... 2739
Josef Dick, Takashi Goda, and Kosuke Suzuki, Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate 2771
Sotirios E. Notaris, Anti-Gaussian quadrature formulae of Chebyshev type 2803
Ariel Pacetti and Lucas Villagra Torcomian, Q-Curves, Hecke characters and some Diophantine equations 2817
Thomas Rüd, Explicit Tamagawa numbers for certain algebraic tori over number fields .. 2867
Colin Faverjon and Marina Poulet, An algorithm to recognize regular singular Mahler systems .. 2905
James Rickards, Improved computation of fundamental domains for arithmetic Fuchsian groups .. 2929
Guillem Blanco, An algorithm for Hodge ideals ... 2955
Sandra Di Rocco, David Eklund, and Oliver Gäfvert, Sampling and homology via bottlenecks ... 2969