A range characterization of the single-quadrant ADRT
HTML articles powered by AMS MathViewer
- by Weilin Li, Kui Ren and Donsub Rim;
- Math. Comp. 92 (2023), 283-306
- DOI: https://doi.org/10.1090/mcom/3750
- Published electronically: August 31, 2022
- HTML | PDF | Request permission
Abstract:
This work characterizes the range of the single-quadrant approximate discrete Radon transform (ADRT) of square images. The characterization follows from a set of linear constraints on the codomain. We show that for data satisfying these constraints, the exact and fast inversion formula by Rim [Appl. Math. Lett. 102 (2020), 106159] yields a square image in a stable manner. The range characterization is obtained by first showing that the ADRT is a bijection between images supported on infinite half-strips, then identifying the linear subspaces that stay finitely supported under the inversion formula.References
- A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky, A framework for discrete integral transformations. I. The pseudopolar Fourier transform, SIAM J. Sci. Comput. 30 (2008), no. 2, 764–784. MR 2385884, DOI 10.1137/060650283
- A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov, A framework for discrete integral transformations. II. The 2D discrete Radon transform, SIAM J. Sci. Comput. 30 (2008), no. 2, 785–803. MR 2385885, DOI 10.1137/060650301
- Gregory Beylkin, Discrete Radon transform, IEEE Trans. Acoust. Speech Signal Process. 35 (1987), no. 2, 162–172. MR 904961, DOI 10.1109/TASSP.1987.1165108
- Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister, Sliced and Radon Wasserstein barycenters of measures, J. Math. Imaging Vision 51 (2015), no. 1, 22–45. MR 3300482, DOI 10.1007/s10851-014-0506-3
- Martin L. Brady, A fast discrete approximation algorithm for the Radon transform, SIAM J. Comput. 27 (1998), no. 1, 107–119. MR 1614880, DOI 10.1137/S0097539793256673
- A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, J. Appl. Phys. 34 (1963), no. 9, 2722–2727.
- Stanley R. Deans, The Radon transform and some of its applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709591
- Joachim Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies, Academic Press, Burlington, 1996.
- W. A. Götz and H. J. Druckmüller, A fast digital Radon transform—an efficient means for evaluating the Hough transform, Pattern Recognition 28 (1995), no. 12, 1985–1992. MR 1365481, DOI 10.1016/0031-3203(95)00057-7
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- Joonas Ilmavirta, On Radon transforms on tori, J. Fourier Anal. Appl. 21 (2015), no. 2, 370–382. MR 3319537, DOI 10.1007/s00041-014-9374-x
- Joonas Ilmavirta, Olli Koskela, and Jesse Railo, Torus computed tomography, SIAM J. Appl. Math. 80 (2020), no. 4, 1947–1976. MR 4140552, DOI 10.1137/19M1268070
- Joonas Ilmavirta and François Monard, 4. Integral Geometry on Manifolds with Boundary and Applications, De Gruyter, 2019, pp. 43–114.
- Joonas Ilmavirta and Gunther Uhlmann, Tensor tomography in periodic slabs, J. Funct. Anal. 275 (2018), no. 2, 288–299. MR 3802484, DOI 10.1016/j.jfa.2018.04.004
- S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the 2D fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Probl. 12 (2004), no. 3, 245–278. MR 2080991, DOI 10.1163/1569394042215865
- B. T. Kelley and V. K. Madisetti, The fast discrete Radon transform. I. Theory, IEEE Trans. Image Process. 2 (1993), no. 3, 382–400.
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Bull. Amer. Math. Soc. 70 (1964), 130–142. MR 167868, DOI 10.1090/S0002-9904-1964-11051-X
- A. K. Louis and Th. Schuster, A novel filter design technique in $2$D computerized tomography, Inverse Problems 12 (1996), no. 5, 685–696. MR 1413427, DOI 10.1088/0266-5611/12/5/011
- Alfred K. Louis, Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal. 15 (1984), no. 3, 621–633. MR 740700, DOI 10.1137/0515047
- Alfred K. Louis, Tikhonov-Phillips regularization of the Radon transform, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Internat. Schriftenreihe Numer. Math., vol. 73, Birkhäuser, Basel, 1985, pp. 211–223. MR 882570
- Alfred K. Louis and Andreas Rieder, Incomplete data problems in x-ray computerized tomography. II. Truncated projections and region-of-interest tomography, Numer. Math. 56 (1989), no. 4, 371–383. MR 1017837, DOI 10.1007/BF01396611
- P. Maass, The x-ray transform: singular value decomposition and resolution, Inverse Problems 3 (1987), no. 4, 729–741. MR 928050, DOI 10.1088/0266-5611/3/4/016
- Peter Maass, The interior Radon transform, SIAM J. Appl. Math. 52 (1992), no. 3, 710–724. MR 1163802, DOI 10.1137/0152040
- Robert B. Marr, On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl. 45 (1974), 357–374. MR 336156, DOI 10.1016/0022-247X(74)90078-X
- F. Matus and J. Flusser, Image representation via a finite Radon transform, IEEE Trans. Pattern Analysis Mach. Intell. 15 (1993), no. 10, 996–1006.
- P.A. Midgley and M. Weyland, 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography, Ultramicroscopy 96 (2003), no. 3, 413–431, Proceedings of the International Workshop on Strategies and Advances in Atomic Level Spectroscopy and Analysis.
- F. Natterer, The mathematics of computerized tomography, Classics in Applied Mathematics, vol. 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original. MR 1847845, DOI 10.1137/1.9780898719284
- William H. Press, Discrete Radon transform has an exact, fast inverse and generalizes to operations other than sums along lines, Proc. Natl. Acad. Sci. USA 103 (2006), no. 51, 19249–19254. MR 2270446, DOI 10.1073/pnas.0609228103
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical recipes in C, 2nd ed., Cambridge University Press, Cambridge, 1992. The art of scientific computing. MR 1201159
- Eric Todd Quinto, Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform, J. Math. Anal. Appl. 95 (1983), no. 2, 437–448. MR 716094, DOI 10.1016/0022-247X(83)90118-X
- Johann Radon, On the determination of functions from their integral values along certain manifolds, IEEE Trans. Med. Imaging 5 (1986), no. 4, 170–176.
- Jesse Railo, Fourier analysis of periodic Radon transforms, J. Fourier Anal. Appl. 26 (2020), no. 4, Paper No. 64, 27. MR 4128058, DOI 10.1007/s00041-020-09775-1
- Donsub Rim, Dimensional splitting of hyperbolic partial differential equations using the Radon transform, SIAM J. Sci. Comput. 40 (2018), no. 6, A4184–A4207. MR 3892433, DOI 10.1137/17M1135633
- Donsub Rim and Kyle T. Mandli, Displacement interpolation using monotone rearrangement, SIAM/ASA J. Uncertain. Quantif. 6 (2018), no. 4, 1503–1531. MR 3873035, DOI 10.1137/18M1168315
- Donsub Rim, Exact and fast inversion of the approximate discrete Radon transform from partial data, Appl. Math. Lett. 102 (2020), 106159, 5. MR 4039172, DOI 10.1016/j.aml.2019.106159
- TaiChiu Hsung, D. P. K. Lun, and Wan-Chi Siu, The discrete periodic Radon transform, IEEE Trans. Signal Process. 44 (1996), no. 10, 2651–2657.
Bibliographic Information
- Weilin Li
- Affiliation: Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
- MR Author ID: 1052146
- ORCID: 0000-0003-0345-4713
- Email: weilinli@cims.nyu.edu
- Kui Ren
- Affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
- MR Author ID: 711179
- ORCID: 0000-0001-6463-4561
- Email: kr2002@columbia.edu
- Donsub Rim
- Affiliation: Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, Missouri 63105
- MR Author ID: 990462
- ORCID: 0000-0002-6721-2070
- Email: rim@wustl.edu
- Received by editor(s): October 18, 2020
- Received by editor(s) in revised form: March 7, 2022
- Published electronically: August 31, 2022
- Additional Notes: The first author was supported by AMS Simons Travel grant. The work of the second author was partially supported by the National Science Foundation through grants DMS-1913309 and DMS-1937254. The work of the third author was partially supported by the Air Force Center of Excellence on Multi-Fidelity Modeling of Rocket Combustor Dynamics under Award Number FA9550-17-1-0195 and AFOSR MURI on multi-information sources of multi-physics systems under Award Number FA9550-15-1-0038
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 283-306
- MSC (2020): Primary 44A12, 65R10, 92C55, 68U05, 15A04
- DOI: https://doi.org/10.1090/mcom/3750
- MathSciNet review: 4496966