Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators
HTML articles powered by AMS MathViewer
- by Geneviève Dusson, Israel Michael Sigal and Benjamin Stamm;
- Math. Comp. 92 (2023), 217-249
- DOI: https://doi.org/10.1090/mcom/3774
- Published electronically: September 23, 2022
- HTML | PDF | Request permission
Abstract:
In this article, we propose a new numerical method and its analysis to solve eigenvalue problems for self-adjoint Schrödinger operators, by combining the Feshbach–Schur perturbation theory with the spectral Fourier discretization. In order to analyze the method, we establish an abstract framework of Feshbach–Schur perturbation theory with minimal regularity assumptions on the potential that is then applied to the setting of the new spectral Fourier discretization method. Finally, we present some numerical results that underline the theoretical findings.References
- I. Babuška and J. Osborn, Eigenvalue problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR 1115240
- I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), no. 186, 275–297. MR 962210, DOI 10.1090/S0025-5718-1989-0962210-8
- Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. MR 2652780, DOI 10.1017/S0962492910000012
- D. Brust, Electronic spectra of crystalline germanium and silicon, Phys. Rev. 134 (1964). no. 5A, A1337–A1353.
- Eric Cancès, Rachida Chakir, Lianhua He, and Yvon Maday, Two-grid methods for a class of nonlinear elliptic eigenvalue problems, IMA J. Numer. Anal. 38 (2018), no. 2, 605–645. MR 3800034, DOI 10.1093/imanum/drw053
- Eric Cancès, Rachida Chakir, and Yvon Maday, Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput. 45 (2010), no. 1-3, 90–117. MR 2679792, DOI 10.1007/s10915-010-9358-1
- E. Cancès, R. Coyaud, and L. R. Scott. Van der Waals interactions between two hydrogen atoms: The next orders. arXiv preprint arXiv:2007.04227, 2020.
- Éric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík, A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 352 (2014), no. 11, 941–946 (English, with English and French summaries). MR 3268767, DOI 10.1016/j.crma.2014.09.014
- Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, and Martin Vohralík, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models, J. Comput. Phys. 307 (2016), 446–459. MR 3448218, DOI 10.1016/j.jcp.2015.12.012
- E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík. Post-processing of the planewave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, 09 2020.
- E. Cancès and L. R. Scott, Van der Waals Interactions Between Two Hydrogen Atoms: The Slater–Kirkwood Method Revisited, SIAM Journal on Mathematical Analysis, 50(1):381–410, 2018.
- Françoise Chatelin, Spectral approximation of linear operators, Classics in Applied Mathematics, vol. 65, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. With a foreword by P. Henrici; With solutions to exercises by Mario Ahués; Reprint of the 1983 original [ MR0716134]. MR 3405533, DOI 10.1137/1.9781611970678.ch1
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
- Xiaoying Dai and Aihui Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal. 46 (2007/08), no. 1, 295–324. MR 2377265, DOI 10.1137/06067780X
- Geneviève Dusson, Post-processing of the plane-wave approximation of Schrödinger equations. Part II: Kohn-Sham models, IMA J. Numer. Anal. 41 (2021), no. 4, 2456–2487. MR 4328390, DOI 10.1093/imanum/draa052
- M. Griesemer and D. Hasler, On the smooth Feshbach-Schur map, J. Funct. Anal. 254 (2008), no. 9, 2329–2335. MR 2409163, DOI 10.1016/j.jfa.2008.01.015
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Stephen J. Gustafson and Israel Michael Sigal, Mathematical concepts of quantum mechanics, Universitext, Springer-Verlag, Berlin, 2003. MR 2002159, DOI 10.1007/978-3-642-55729-3
- M. F. Herbst, A. Levitt, and E. Cancès, DFTK: a Julian approach for simulating electrons in solids, JuliaCon Proc. 3 (2021), no. 26, 69.
- P. D. Hislop and I. M. Sigal, Introduction to spectral theory, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. With applications to Schrödinger operators. MR 1361167, DOI 10.1007/978-1-4612-0741-2
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
- C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46 (1934), no. 7, 618–622.
- Richard Norton and Robert Scheichl, Convergence analysis of planewave expansion methods for 2D Schrödinger operators with discontinuous periodic potentials, SIAM J. Numer. Anal. 47 (2010), no. 6, 4356–4380. MR 2585190, DOI 10.1137/090756545
- M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. 2: Fourier Analysis, Self-Adjointness. Elsevier, 1975.
- M. Reed and B. Simon. Methods of Modern Mathematical Physics. Vol. 4. Operator Analysis. Academic Press, New York, 1979.
- Franz Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Assisted by J. Berkowitz; With a preface by Jacob T. Schwartz. MR 240668
- Jinchao Xu and Aihui Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001), no. 233, 17–25. MR 1677419, DOI 10.1090/S0025-5718-99-01180-1
Bibliographic Information
- Geneviève Dusson
- Affiliation: Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
- ORCID: 0000-0002-7160-6064
- Email: genevieve.dusson@math.cnrs.fr
- Israel Michael Sigal
- Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Bahen Centre, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 161895
- ORCID: 0000-0001-7514-7056
- Email: im.sigal@utoronto.ca
- Benjamin Stamm
- Affiliation: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- MR Author ID: 824171
- ORCID: 0000-0003-3375-483X
- Email: best@ians.uni-stuttgart.de
- Received by editor(s): August 24, 2020
- Received by editor(s) in revised form: December 3, 2021, and April 22, 2022
- Published electronically: September 23, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 217-249
- MSC (2020): Primary 65N25, 65N12, 65N15
- DOI: https://doi.org/10.1090/mcom/3774
- MathSciNet review: 4496964