## Concurrent lines on del Pezzo surfaces of degree one

HTML articles powered by AMS MathViewer

- by
Ronald van Luijk and Rosa Winter
**HTML**| PDF - Math. Comp.
**92**(2023), 451-481 Request permission

## Abstract:

Let $X$ be a del Pezzo surface of degree one over an algebraically closed field, and $K_X$ its canonical divisor. The morphism $\varphi$ induced by $|-2K_X|$ realizes $X$ as a double cover of a cone in $\mathbb {P}^3$, ramified over a smooth sextic curve. The surface $X$ contains 240 exceptional curves. We prove the following statements. For a point $P$ on the ramification curve of $\varphi$, at most sixteen exceptional curves contain $P$ in characteristic $2$, and at most ten in all other characteristics. Moreover, for a point $Q$ outside the ramification curve, at most twelve exceptional curves contain $Q$ in characteristic $3$, and at most ten in all other characteristics. We show that these upper bounds are sharp, except possibly in characteristic 5 outside the ramification curve.## References

- Wieb Bosma, John Cannon, and Catherine Playoust,
*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR**1484478**, DOI 10.1006/jsco.1996.0125 - P. Cragnolini and P. A. Oliverio,
*Lines on del Pezzo surfaces with $K^2_S=1$ in characteristic $\neq 2$*, Comm. Algebra**27**(1999), no. 3, 1197–1206. MR**1669140**, DOI 10.1080/00927879908826489 -
*Magma code*, Proposition 4.6, http://www.rosa-winter.com/MagmaConcurrentLines.txt. -
*Magma code*, Four polynomials Proposition 4.6, http://www.rosa-winter.com/FourPolynomials.txt. - M. Demazure,
*Séminaire sur les Singularités des Surfaces*, Lecture Notes in Mathematics, no. 777, Springer-Verlag, 1980. - B. Edixhoven and J.-M. Couveignes,
*Computational Aspects of Modular Forms and Galois Representations*, Number 176. Princeton University Press, 2011. With R. de Jong, F. Merkl and J. Bosman. - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - Yu. I. Manin and M. Hazewinkel,
*Cubic forms: algebra, geometry, arithmetic*, North-Holland Mathematical Library, Vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Translated from the Russian by M. Hazewinkel. MR**0460349** - Tetsuji Shioda,
*On the Mordell-Weil lattices*, Comment. Math. Univ. St. Paul.**39**(1990), no. 2, 211–240. MR**1081832** - Cecília Salgado, Damiano Testa, and Anthony Várilly-Alvarado,
*On the unirationality of del Pezzo surfaces of degree 2*, J. Lond. Math. Soc. (2)**90**(2014), no. 1, 121–139. MR**3245139**, DOI 10.1112/jlms/jdu014 - Cecília Salgado and Ronald van Luijk,
*Density of rational points on del Pezzo surfaces of degree one*, Adv. Math.**261**(2014), 154–199. MR**3213298**, DOI 10.1016/j.aim.2014.03.028 - Damiano Testa, Anthony Várilly-Alvarado, and Mauricio Velasco,
*Cox rings of degree one del Pezzo surfaces*, Algebra Number Theory**3**(2009), no. 7, 729–761. MR**2579393**, DOI 10.2140/ant.2009.3.729 - R. Winter,
*Geometry and arithmetic of del Pezzo surfaces of degree 1*, Ph.D. Thesis, Universiteit Leiden, 2021, https://scholarlypublications.universiteitleiden.nl/handle/1887/138942. - Rosa Winter and Ronald van Luijk,
*The action of the Weyl group on the $E_8$ root system*, Graphs Combin.**37**(2021), no. 6, 1965–2064. MR**4338713**, DOI 10.1007/s00373-021-02315-8

## Additional Information

**Ronald van Luijk**- Affiliation: Mathematisch Instituut, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
- MR Author ID: 698553
- Email: rvl@math.leidenuniv.nl
**Rosa Winter**- Affiliation: King’s College London, Strand, London WC2R 2LS, United Kingdom
- MR Author ID: 1471783
- ORCID: 0000-0002-5657-3073
- Email: rosa.winter@kcl.ac.uk
- Received by editor(s): April 18, 2020
- Received by editor(s) in revised form: May 4, 2022, and July 10, 2022
- Published electronically: September 12, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp.
**92**(2023), 451-481 - MSC (2020): Primary 14J26, 14J45, 14N10
- DOI: https://doi.org/10.1090/mcom/3779
- MathSciNet review: 4496971