Concurrent lines on del Pezzo surfaces of degree one
HTML articles powered by AMS MathViewer
- by Ronald van Luijk and Rosa Winter;
- Math. Comp. 92 (2023), 451-481
- DOI: https://doi.org/10.1090/mcom/3779
- Published electronically: September 12, 2022
- HTML | PDF | Request permission
Abstract:
Let $X$ be a del Pezzo surface of degree one over an algebraically closed field, and $K_X$ its canonical divisor. The morphism $\varphi$ induced by $|-2K_X|$ realizes $X$ as a double cover of a cone in $\mathbb {P}^3$, ramified over a smooth sextic curve. The surface $X$ contains 240 exceptional curves. We prove the following statements. For a point $P$ on the ramification curve of $\varphi$, at most sixteen exceptional curves contain $P$ in characteristic $2$, and at most ten in all other characteristics. Moreover, for a point $Q$ outside the ramification curve, at most twelve exceptional curves contain $Q$ in characteristic $3$, and at most ten in all other characteristics. We show that these upper bounds are sharp, except possibly in characteristic 5 outside the ramification curve.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- P. Cragnolini and P. A. Oliverio, Lines on del Pezzo surfaces with $K^2_S=1$ in characteristic $\neq 2$, Comm. Algebra 27 (1999), no. 3, 1197–1206. MR 1669140, DOI 10.1080/00927879908826489
- Magma code, Proposition 4.6, http://www.rosa-winter.com/MagmaConcurrentLines.txt.
- Magma code, Four polynomials Proposition 4.6, http://www.rosa-winter.com/FourPolynomials.txt.
- M. Demazure, Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, no. 777, Springer-Verlag, 1980.
- B. Edixhoven and J.-M. Couveignes, Computational Aspects of Modular Forms and Galois Representations, Number 176. Princeton University Press, 2011. With R. de Jong, F. Merkl and J. Bosman.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Yu. I. Manin and M. Hazewinkel, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, Vol. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Translated from the Russian by M. Hazewinkel. MR 460349
- Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832
- Cecília Salgado, Damiano Testa, and Anthony Várilly-Alvarado, On the unirationality of del Pezzo surfaces of degree 2, J. Lond. Math. Soc. (2) 90 (2014), no. 1, 121–139. MR 3245139, DOI 10.1112/jlms/jdu014
- Cecília Salgado and Ronald van Luijk, Density of rational points on del Pezzo surfaces of degree one, Adv. Math. 261 (2014), 154–199. MR 3213298, DOI 10.1016/j.aim.2014.03.028
- Damiano Testa, Anthony Várilly-Alvarado, and Mauricio Velasco, Cox rings of degree one del Pezzo surfaces, Algebra Number Theory 3 (2009), no. 7, 729–761. MR 2579393, DOI 10.2140/ant.2009.3.729
- R. Winter, Geometry and arithmetic of del Pezzo surfaces of degree 1, Ph.D. Thesis, Universiteit Leiden, 2021, https://scholarlypublications.universiteitleiden.nl/handle/1887/138942.
- Rosa Winter and Ronald van Luijk, The action of the Weyl group on the $E_8$ root system, Graphs Combin. 37 (2021), no. 6, 1965–2064. MR 4338713, DOI 10.1007/s00373-021-02315-8
Bibliographic Information
- Ronald van Luijk
- Affiliation: Mathematisch Instituut, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
- MR Author ID: 698553
- Email: rvl@math.leidenuniv.nl
- Rosa Winter
- Affiliation: King’s College London, Strand, London WC2R 2LS, United Kingdom
- MR Author ID: 1471783
- ORCID: 0000-0002-5657-3073
- Email: rosa.winter@kcl.ac.uk
- Received by editor(s): April 18, 2020
- Received by editor(s) in revised form: May 4, 2022, and July 10, 2022
- Published electronically: September 12, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 451-481
- MSC (2020): Primary 14J26, 14J45, 14N10
- DOI: https://doi.org/10.1090/mcom/3779
- MathSciNet review: 4496971