The Weierstrass–Durand–Kerner root finder is not generally convergent
HTML articles powered by AMS MathViewer
- by Bernhard Reinke, Dierk Schleicher and Michael Stoll;
- Math. Comp. 92 (2023), 839-866
- DOI: https://doi.org/10.1090/mcom/3783
- Published electronically: November 10, 2022
- HTML | PDF | Request permission
Abstract:
Finding roots of univariate polynomials is one of the fundamental tasks of numerics, and there is still a wide gap between root finders that are well understood in theory and those that perform well in practice. We investigate the root-finding method of Weierstrass, also known as the Durand–Kerner-method: this is a root finder that tries to approximate all roots of a given polynomial in parallel. This method has been introduced 130 years ago and has since then a good reputation for finding all roots in practice except in obvious cases of symmetry. Nonetheless, very little is known about its global dynamics and convergence properties.
We show that the Weierstrass method, like the well-known Newton method, is not generally convergent: there are open sets of polynomials $p$ of every degree $d \ge 3$ such that the dynamics of the Weierstrass method applied to $p$ exhibits attracting periodic orbits. Specifically, all polynomials sufficiently close to $Z^3 + Z + 175$ have attracting cycles of period $4$. Here, period $4$ is minimal: we show that for cubic polynomials, there are no periodic orbits of length $2$ or $3$ that attract open sets of starting points.
We also establish another convergence problem for the Weierstrass method: for almost every polynomial of degree $d\ge 3$ there are orbits that are defined for all iterates but converge to $\infty$; this is a problem that does not occur for Newton’s method.
Our results are obtained by first interpreting the original problem coming from numerical mathematics in terms of higher-dimensional complex dynamics, then phrasing the question in algebraic terms in such a way that we could finally answer it by applying methods from computer algebra. The main innovation here is the translation into an algebraic question, which is amenable to (exact) computational methods close to the limits of current computer algebra systems.
References
- Todor Bilarev, Magnus Aspenberg, and Dierk Schleicher, On the speed of convergence of Newton’s method for complex polynomials, Math. Comp. 85 (2016), no. 298, 693–705. MR 3434876, DOI 10.1090/mcom/2985
- Béla Bollobás, Malte Lackmann, and Dierk Schleicher, A small probabilistic universal set of starting points for finding roots of complex polynomials by Newton’s method, Math. Comp. 82 (2013), no. 281, 443–457. MR 2983031, DOI 10.1090/S0025-5718-2012-02640-8
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Paul Breiding and Sascha Timme, HomotopyContinuation.jl: a package for homotopy continuation in Julia, Mathematical Software — ICMS 2018, 6th International Conference (South Bend, IN, USA, July 24–27, 2018) Lecture Notes in Computer Science, vol. 10931, Springer, Cham, 2018, pp. 458–465.
- Xavier Buff and Christian Henriksen, On König’s root-finding algorithms, Nonlinearity 16 (2003), no. 3, 989–1015. MR 1975793, DOI 10.1088/0951-7715/16/3/312
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, 2019. available at http://www.singular.uni-kl.de.
- Kiril Dočev, A variant of Newton’s method for the simultaneous approximation of all roots of an algebraic equation, Fiz.-Mat. Spis. BЪlgar. Akad. Nauk. 5(38) (1962), 136–139 (Bulgarian). MR 150948
- E. Durand, Solutions numériques des équations algébriques. Tome I: Équations du type $F(x)=0$; racines d’un polynôme, Masson et Cie, Éditeurs, Paris, 1960 (French). MR 121987
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- John H. Hubbard, Parametrizing unstable and very unstable manifolds, Mosc. Math. J. 5 (2005), no. 1, 105–124 (English, with English and Russian summaries). MR 2153469, DOI 10.17323/1609-4514-2005-5-1-105-124
- John Hubbard, Dierk Schleicher, and Scott Sutherland, How to find all roots of complex polynomials by Newton’s method, Invent. Math. 146 (2001), no. 1, 1–33. MR 1859017, DOI 10.1007/s002220100149
- T. E. Hull and R. Mathon, The mathematical basis and a prototype implementation of a new polynomial rootfinder with quadratic convergence, ACM Trans. Math. Software 22 (1996), no. 3, 261–280. MR 1417311, DOI 10.1145/232826.232830
- Bahman Kalantari, Polynomial root-finding and polynomiography, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. MR 2483211
- Immo O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966), 290–294 (German). MR 203931, DOI 10.1007/BF02162564
- Julius König, Ueber eine Eigenschaft der Potenzreihen, Math. Ann. 23 (1884), no. 3, 447–449 (German). MR 1510264, DOI 10.1007/BF01446400
- R. Lodge, Y. Mikulich, and D. Schleicher, A classification of postcritically finite Newton maps, In the Tradition of Thurston II: Geometry and Groups, 2022, pp. 421–448, DOI 10.1007/978-3-030-97560-9_13.
- Curt McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math. (2) 125 (1987), no. 3, 467–493. MR 890160, DOI 10.2307/1971408
- John Michael McNamee, A 2002 update of the supplementary bibliography on roots of polynomials, J. Comput. Appl. Math. 142 (2002), no. 2, 433–434. MR 1906741, DOI 10.1016/S0377-0427(01)00546-5
- J. M. McNamee, Numerical methods for roots of polynomials. Part I, Studies in Computational Mathematics, vol. 14, Elsevier B. V., Amsterdam, 2007. MR 2483756
- J. M. McNamee and V. Y. Pan, Numerical methods for roots of polynomials. Part II, Studies in Computational Mathematics, vol. 16, Elsevier/Academic Press, Amsterdam, 2013. MR 3293902
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5
- Victor Y. Pan, Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (1997), no. 2, 187–220. MR 1453318, DOI 10.1137/S0036144595288554
- Victor Y. Pan, Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding, J. Symbolic Comput. 33 (2002), no. 5, 701–733. Computer algebra (London, ON, 2001). MR 1919911, DOI 10.1006/jsco.2002.0531
- Victor Y. Pan, New progress in polynomial root-finding, arXiv:1805.12042 (2021).
- M. S. Petković, L. D. Petković, and Đ. Herceg, On Schröder’s families of root-finding methods, J. Comput. Appl. Math. 233 (2010), no. 8, 1755–1762. MR 2564013, DOI 10.1016/j.cam.2009.09.012
- Marvin Randig, Dierk Schleicher, and Robin Stoll, Newton’s method in practice II: The iterated refinement Newton method and near-optimal complexity for finding all roots of some polynomials of very large degrees, 2017-12-31. arXiv preprint, https://arxiv.org/abs/1703.05847, to appear.
- Bernhard Reinke, Diverging orbits for the Ehrlich-Aberth and the Weierstrass root finders, Proc. Amer. Math. Soc. 150 (2022), no. 3, 1287–1300. MR 4375722, DOI 10.1090/proc/15715
- Günter Rottenfusser, Johannes Rückert, Lasse Rempe, and Dierk Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), no. 1, 77–125. MR 2753600, DOI 10.4007/annals.2011.173.1.3
- Dierk Schleicher, On the Efficient Global Dynamics of Newton’s Method for Complex Polynomials, 2016-10-08. arXiv preprint, https://arxiv.org/abs/1108.5773, to appear.
- Dierk Schleicher and Robin Stoll, Newton’s method in practice: Finding all roots of polynomials of degree one million efficiently, Theoret. Comput. Sci. 681 (2017), 146–166. MR 3659421, DOI 10.1016/j.tcs.2017.03.025
- E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870), no. 2, 317–365 (German). MR 1509664, DOI 10.1007/BF01444024
- Sergey Shemyakov, Roman Chernov, Dzmitry Rumiantsau, Dierk Schleicher, Simon Schmitt, and Anton Shemyakov, Finding polynomial roots by dynamical systems—a case study, Discrete Contin. Dyn. Syst. 40 (2020), no. 12, 6945–6965. MR 4160098, DOI 10.3934/dcds.2020261
- Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, DOI 10.1090/S0273-0979-1985-15391-1
- M. Stoll, Magma code verifying the results in Sections \ref{SS:perpts} and \ref{Sec:Cubic}, http://www.mathe2.uni-bayreuth.de/stoll/magma/index.html\#Weierstrass.
- Karl Weierstraß, Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen, Sitzungsber. Königlich Preussischen Akad. Wiss. Berlin (1891), 1085–1101.
Bibliographic Information
- Bernhard Reinke
- Affiliation: Sorbonne Université and Université de Paris, CNRS, IMJ-PRG, F-75005 Paris, France
- MR Author ID: 1489442
- ORCID: 0000-0001-9024-2449
- Email: bernhard.reinke@imj-prg.fr
- Dierk Schleicher
- Affiliation: Aix-Marseille Université and CNRS, UMR 7373, Institut de Mathématiques de Marseille, 163 Avenue de Luminy Case 901, 13009 Marseille, France
- MR Author ID: 359328
- Email: Dierk.Schleicher@univ-amu.fr
- Michael Stoll
- Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
- MR Author ID: 325630
- ORCID: 0000-0001-5868-2962
- Email: Michael.Stoll@uni-bayreuth.de
- Received by editor(s): December 30, 2021
- Received by editor(s) in revised form: June 19, 2022, and July 23, 2022
- Published electronically: November 10, 2022
- Additional Notes: The authors were supported by the European Research Council in the form of the ERC Advanced Grant HOLOGRAM. The first author was also partially supported by the ERC project 818737 “Emergence of wild differentiable dynamical systems”.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 839-866
- MSC (2020): Primary 65H04, 37F80, 37N30, 68W30
- DOI: https://doi.org/10.1090/mcom/3783
- MathSciNet review: 4524110