Super-polynomial accuracy of one dimensional randomized nets using the median of means
HTML articles powered by AMS MathViewer
- by Zexin Pan and Art B. Owen;
- Math. Comp. 92 (2023), 805-837
- DOI: https://doi.org/10.1090/mcom/3791
- Published electronically: October 7, 2022
- HTML | PDF | Request permission
Abstract:
Let $f$ be analytic on $[0,1]$ with $|f^{(k)}(1/2)|\leqslant A\alpha ^kk!$ for some constants $A$ and $\alpha <2$ and all $k\geqslant 1$. We show that the median estimate of $\mu =\int _0^1f(x)\,\mathrm {d} x$ under random linear scrambling with $n=2^m$ points converges at the rate $O(n^{-c\log (n)})$ for any $c< 3\log (2)/\pi ^2\approx 0.21$. We also get a super-polynomial convergence rate for the sample median of $2k-1$ random linearly scrambled estimates, when $k/m$ is bounded away from zero. When $f$ has a $p$’th derivative that satisfies a $\lambda$-Hölder condition then the median of means has error $O( n^{-(p+\lambda )+\epsilon })$ for any $\epsilon >0$, if $k\to \infty$ as $m\to \infty$. The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number.References
- Andrews, G. E. 1984. The Theory of Partitions, Number 2, Cambridge University Press, Cambridge.
- Mohammadreza Bidar, Partition of an integer into distinct bounded parts, identities and bounds, Integers 12 (2012), no. 3, 445–457. MR 2955525, DOI 10.1515/integers-2011-0115
- Sou-Cheng T. Choi, Fred J. Hickernell, Rathinavel Jagadeeswaran, Michael J. McCourt, and Aleksei G. Sorokin, Quasi-Monte Carlo software, Monte Carlo and quasi-Monte Carlo methods, Springer Proc. Math. Stat., vol. 387, Springer, Cham, [2022] ©2022, pp. 23–47. MR 4461047, DOI 10.1007/978-3-030-98319-2_{2}
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- Josef Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands, Ann. Statist. 39 (2011), no. 3, 1372–1398. MR 2850206, DOI 10.1214/11-AOS880
- Josef Dick, Takashi Goda, Kosuke Suzuki, and Takehito Yoshiki, Construction of interlaced polynomial lattice rules for infinitely differentiable functions, Numer. Math. 137 (2017), no. 2, 257–288. MR 3696080, DOI 10.1007/s00211-017-0882-x
- Josef Dick and Friedrich Pillichshammer, Digital nets and sequences, Cambridge University Press, Cambridge, 2010. Discrepancy theory and quasi-Monte Carlo integration. MR 2683394, DOI 10.1017/CBO9780511761188
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR 2483235, DOI 10.1017/CBO9780511801655
- Gobet, E., M. Lerasle, and D. Métivier, 2022. Mean estimation for randomized quasi Monte Carlo method, Technical Report, hal-03631879.
- Takashi Goda and Josef Dick, Construction of interlaced scrambled polynomial lattice rules of arbitrary high order, Found. Comput. Math. 15 (2015), no. 5, 1245–1278. MR 3394710, DOI 10.1007/s10208-014-9226-8
- Takashi Goda and Pierre L’Ecuyer, Construction-free median quasi–Monte Carlo rules for function spaces with unspecified smoothness and general weights, SIAM J. Sci. Comput. 44 (2022), no. 4, A2765–A2788. MR 4474386, DOI 10.1137/22M1473625
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. A foundation for computer science. MR 1001562
- G. H. Hardy and S. Ramanujan, Asymptotic Formulaae in Combinatory Analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115. MR 1575586, DOI 10.1112/plms/s2-17.1.75
- Stefan Heinrich and Erich Novak, Optimal summation and integration by deterministic, randomized, and quantum algorithms, Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), Springer, Berlin, 2002, pp. 50–62. MR 1958846
- Hofstadler, J. and D. Rudolf, 2022. Consistency of randomized integration methods, Technical Report, arXiv:2203.17010.
- Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani, Random generation of combinatorial structures from a uniform distribution, Theoret. Comput. Sci. 43 (1986), no. 2-3, 169–188. MR 855970, DOI 10.1016/0304-3975(86)90174-X
- Keller, A. 2013. Quasi-Monte Carlo image synthesis in a nutshell. In Dick, J., Kuo, F. Y., Peters, G. W., and Sloan, I. H., editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 213–249, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Robert J. Kunsch, Erich Novak, and Daniel Rudolf, Solvable integration problems and optimal sample size selection, J. Complexity 53 (2019), 40–67. MR 3953086, DOI 10.1016/j.jco.2018.10.007
- Guillaume Lecué and Matthieu Lerasle, Robust machine learning by median-of-means: theory and practice, Ann. Statist. 48 (2020), no. 2, 906–931. MR 4102681, DOI 10.1214/19-AOS1828
- Pierre L’Ecuyer, Pierre Marion, Maxime Godin, and Florian Puchhammer, A tool for custom construction of QMC and RQMC point sets, Monte Carlo and quasi-Monte Carlo methods, Springer Proc. Math. Stat., vol. 387, Springer, Cham, [2022] ©2022, pp. 51–70. MR 4461048, DOI 10.1007/978-3-030-98319-2_{3}
- Lether, F. G. and P. R. Wenston, 1991. Elementary approximations for Dawson’s integral, J. Quant. Spectroscopy Radiative Transf. 46, no. 4, 343–345.
- Matoušek, J. 1998. Geometric Discrepancy: An Illustrated Guide, Springer-Verlag, Heidelberg.
- Art B. Owen, Scrambled net variance for integrals of smooth functions, Ann. Statist. 25 (1997), no. 4, 1541–1562. MR 1463564, DOI 10.1214/aos/1031594731
- Owen, A. B. 2003. Variance with alternative scramblings of digital nets, ACM Trans. Model. Comput. Simul. 13, no. 4m 363–378.
- Pirsic, G. 1995. Schnell konvergierende Walshreihen über gruppen, Master’s Thesis, University of Salzburg, Institute for Mathematics.
- Surjanovic, S. and D. Bingham, 2013. Virtual library of simulation experiments: test functions and datasets, https://www.sfu.ca/~ssurjano/.
- Kosuke Suzuki, Super-polynomial convergence and tractability of multivariate integration for infinitely times differentiable functions, J. Complexity 39 (2017), 51–68. MR 3605754, DOI 10.1016/j.jco.2016.10.002
- Jaspar Wiart, Christiane Lemieux, and Gracia Y. Dong, On the dependence structure and quality of scrambled $(t, m, s)$-nets, Monte Carlo Methods Appl. 27 (2021), no. 1, 1–26. MR 4223857, DOI 10.1515/mcma-2020-2079
Bibliographic Information
- Zexin Pan
- Affiliation: Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305
- MR Author ID: 1340663
- Email: zep002@stanford.edu
- Art B. Owen
- Affiliation: Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305
- MR Author ID: 134875
- Email: owen@stanford.edu
- Received by editor(s): February 8, 2022
- Received by editor(s) in revised form: July 7, 2022
- Published electronically: October 7, 2022
- Additional Notes: This work was supported by the U.S. National Science Foundation under grants IIS-1837931 and DMS-2152780.
- © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 805-837
- MSC (2020): Primary 65D30, 05A17
- DOI: https://doi.org/10.1090/mcom/3791
- MathSciNet review: 4524109