Super-localization of elliptic multiscale problems
HTML articles powered by AMS MathViewer
- by Moritz Hauck and Daniel Peterseim;
- Math. Comp. 92 (2023), 981-1003
- DOI: https://doi.org/10.1090/mcom/3798
- Published electronically: November 21, 2022
- HTML | PDF | Request permission
Previous version: Original version posted November 21, 2022
Corrected version: This version corrects a publisher error in the references
Abstract:
Numerical homogenization aims to efficiently and accurately approximate the solution space of an elliptic partial differential operator with arbitrarily rough coefficients in a $d$-dimensional domain. The application of the inverse operator to some standard finite element space defines an approximation space with uniform algebraic approximation rates with respect to the mesh size parameter $H$. This holds even for under-resolved rough coefficients. However, the true challenge of numerical homogenization is the localized computation of a localized basis for such an operator-dependent approximation space. This paper presents a novel localization technique that leads to a super-exponential decay of its basis relative to $H$. This suggests that basis functions with supports of width $\mathcal O(H|\log H|^{(d-1)/d})$ are sufficient to preserve the optimal algebraic rates of convergence in $H$ without pre-asymptotic effects. A sequence of numerical experiments illustrates the significance of the new localization technique when compared to the so far best localization to supports of width $\mathcal O(H|\log H|)$.References
- Robert Altmann, Patrick Henning, and Daniel Peterseim, Numerical homogenization beyond scale separation, Acta Numer. 30 (2021), 1–86. MR 4298217, DOI 10.1017/S0962492921000015
- Giles Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25 (2004), no. 3-4, 321–348. MR 2072072, DOI 10.1081/NFA-120039655
- F. Bonizzoni, P. Freese, and D. Peterseim, Super-localized orthogonal decomposition for convection-dominated diffusion problems, ArXiv e-print arXiv:2206.01975, 2022.
- Susanne C. Brenner, José C. Garay, and Li-Yeng Sung, Additive Schwarz preconditioners for a localized orthogonal decomposition method, Electron. Trans. Numer. Anal. 54 (2021), 234–255. MR 4237016, DOI 10.1553/etna_{v}ol54s234
- Ivo Babuska and Robert Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul. 9 (2011), no. 1, 373–406. MR 2801210, DOI 10.1137/100791051
- Ivo Babuška and John E. Osborn, Can a finite element method perform arbitrarily badly?, Math. Comp. 69 (2000), no. 230, 443–462. MR 1648351, DOI 10.1090/S0025-5718-99-01085-6
- Leonid Berlyand and Houman Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Arch. Ration. Mech. Anal. 198 (2010), no. 2, 677–721. MR 2721592, DOI 10.1007/s00205-010-0302-1
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Andreas Buhr and Kathrin Smetana, Randomized local model order reduction, SIAM J. Sci. Comput. 40 (2018), no. 4, A2120–A2151. MR 3824169, DOI 10.1137/17M1138480
- Yifan Chen, Thomas Y. Hou, and Yixuan Wang, Exponential convergence for multiscale linear elliptic PDEs via adaptive edge basis functions, Multiscale Model. Simul. 19 (2021), no. 2, 980–1010. MR 4269488, DOI 10.1137/20M1352922
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ke Chen, Qin Li, Jianfeng Lu, and Stephen J. Wright, Randomized sampling for basis function construction in generalized finite element methods, Multiscale Model. Simul. 18 (2020), no. 2, 1153–1177. MR 4116748, DOI 10.1137/18M1166432
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Moritz Hauck and Daniel Peterseim, Multi-resolution localized orthogonal decomposition for Helmholtz problems, Multiscale Model. Simul. 20 (2022), no. 2, 657–684. MR 4490294, DOI 10.1137/21M1414607
- Michael Feischl and Daniel Peterseim, Sparse compression of expected solution operators, SIAM J. Numer. Anal. 58 (2020), no. 6, 3144–3164. MR 4170190, DOI 10.1137/20M132571X
- L. Grasedyck, I. Greff, and S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media, Multiscale Model. Simul. 10 (2012), no. 1, 245–258. MR 2902606, DOI 10.1137/11082138X
- D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg. 295 (2015), 1–17. MR 3388822, DOI 10.1016/j.cma.2015.06.017
- Jeffrey Galkowski and John A. Toth, Pointwise bounds for Steklov eigenfunctions, J. Geom. Anal. 29 (2019), no. 1, 142–193. MR 3897008, DOI 10.1007/s12220-018-9984-7
- P. D. Hislop and C. V. Lutzer, Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in $\Bbb R^d$, Inverse Problems 17 (2001), no. 6, 1717–1741. MR 1872919, DOI 10.1088/0266-5611/17/6/313
- Patrick Henning and Daniel Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul. 11 (2013), no. 4, 1149–1175. MR 3123820, DOI 10.1137/120900332
- Moritz Hauck and Daniel Peterseim, Multi-resolution localized orthogonal decomposition for Helmholtz problems, Multiscale Model. Simul. 20 (2022), no. 2, 657–684. MR 4490294, DOI 10.1137/21M1414607
- Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition, Math. Comp. 87 (2018), no. 314, 2765–2774. MR 3834684, DOI 10.1090/mcom/3302
- Ralf Kornhuber and Harry Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition, Multiscale Model. Simul. 14 (2016), no. 3, 1017–1036. MR 3536998, DOI 10.1137/15M1028510
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Roland Maier, A high-order approach to elliptic multiscale problems with general unstructured coefficients, SIAM J. Numer. Anal. 59 (2021), no. 2, 1067–1089. MR 4246089, DOI 10.1137/20M1364321
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- A. Målqvist and D. Peterseim, Numerical homogenization by localized orthogonal decomposition, SIAM Spotlights, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, [2021] ©2021. MR 4191211
- Chupeng Ma, Robert Scheichl, and Tim Dodwell, Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations, SIAM J. Numer. Anal. 60 (2022), no. 1, 244–273. MR 4372648, DOI 10.1137/21M1406179
- Houman Owhadi and Clint Scovel, Operator-adapted wavelets, fast solvers, and numerical homogenization, Cambridge Monographs on Applied and Computational Mathematics, vol. 35, Cambridge University Press, Cambridge, 2019. From a game theoretic approach to numerical approximation and algorithm design. MR 3971243, DOI 10.1017/9781108594967
- Houman Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games, SIAM Rev. 59 (2017), no. 1, 99–149. MR 3605827, DOI 10.1137/15M1013894
- Houman Owhadi and Lei Zhang, Metric-based upscaling, Comm. Pure Appl. Math. 60 (2007), no. 5, 675–723. MR 2292954, DOI 10.1002/cpa.20163
- Houman Owhadi and Lei Zhang, Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast, Multiscale Model. Simul. 9 (2011), no. 4, 1373–1398. MR 2861243, DOI 10.1137/100813968
- Houman Owhadi, Lei Zhang, and Leonid Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 2, 517–552. MR 3177856, DOI 10.1051/m2an/2013118
- Iosif Polterovich, David A. Sher, and John A. Toth, Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces, J. Reine Angew. Math. 754 (2019), 17–47. MR 4000569, DOI 10.1515/crelle-2017-0018
- L. Piegl and W. Tiller, The NURBS Book, Springer-Verlag, Berlin, Heidelberg, 1995.
Bibliographic Information
- Moritz Hauck
- Affiliation: Institute of Mathematics, University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany
- MR Author ID: 1416098
- ORCID: 0000-0003-4817-9727
- Email: moritz.hauck@uni-a.de
- Daniel Peterseim
- Affiliation: Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany
- MR Author ID: 848711
- ORCID: 0000-0001-7213-556X
- Email: daniel.peterseim@uni-a.de
- Received by editor(s): July 28, 2021
- Received by editor(s) in revised form: March 22, 2022
- Published electronically: November 21, 2022
- Additional Notes: The work of Moritz Hauck and Daniel Peterseim was part of a project that received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 865751 – RandomMultiScales).
This work is dedicated to Professor Carsten Carstensen on the occasion of his 60th birthday - © Copyright 2022 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 981-1003
- MSC (2020): Primary 65N12, 65N30
- DOI: https://doi.org/10.1090/mcom/3798
- MathSciNet review: 4550317