A construction of a $\lambda$-Poisson generic sequence
HTML articles powered by AMS MathViewer
- by Verónica Becher and Gabriel Sac Himelfarb;
- Math. Comp. 92 (2023), 1453-1466
- DOI: https://doi.org/10.1090/mcom/3806
- Published electronically: January 31, 2023
- HTML | PDF | Request permission
Abstract:
Years ago Zeev Rudnick defined the $\lambda$-Poisson generic sequences as the infinite sequences of symbols in a finite alphabet where the number of occurrences of long words in the initial segments follow the Poisson distribution with parameter $\lambda$. Although almost all sequences, with respect to the uniform measure, are Poisson generic, no explicit instance has yet been given. In this note we give a construction of an explicit $\lambda$-Poisson generic sequence over any alphabet and any positive $\lambda$, except for the case of the two-symbol alphabet, in which it is required that $\lambda$ be less than or equal to the natural logarithm of $2$. Since $\lambda$-Poisson genericity implies Borel normality, the constructed sequences are Borel normal. The same construction provides explicit instances of Borel normal sequences that are not $\lambda$-Poisson generic.References
- N. Alvarez, V. Becher, and M. Mereb, Poisson generic sequences, Int. Math. Res. Not. rnac234 (2022), DOI 10.1093/imrn/rnac234.
- Verónica Becher and Pablo Ariel Heiber, On extending de Bruijn sequences, Inform. Process. Lett. 111 (2011), no. 18, 930–932. MR 2849850, DOI 10.1016/j.ipl.2011.06.013
- Yann Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge Tracts in Mathematics, vol. 193, Cambridge University Press, Cambridge, 2012. MR 2953186, DOI 10.1017/CBO9781139017732
- L. P. Colomer, Very normal numbers, 2019, Tesis de Licenciatura en Ciencias de la Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
- Arthur H. Copeland and Paul Erdös, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860. MR 17743, DOI 10.1090/S0002-9904-1946-08657-7
- N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch., Proc. 49 (1946), 758–764 = Indagationes Math. 8, 461–467 (1946). MR 18142
- Andrzej Ehrenfeucht and Jan Mycielski, Unsolved Problems: A Pseudorandom Sequence–How Random Is It?, Amer. Math. Monthly 99 (1992), no. 4, 373–375. MR 1542110, DOI 10.2307/2324917
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR 2483235, DOI 10.1017/CBO9780511801655
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 419394
- Zeév Rudnick and Alexandru Zaharescu, The distribution of spacings between fractional parts of lacunary sequences, Forum Math. 14 (2002), no. 5, 691–712. MR 1924774, DOI 10.1515/form.2002.030
- Benjamin Weiss, Poisson generic points, Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness, Centre International de Rencontres Mathématiques, November 23 to 29, 2020. Audio-visual resource: doi:10.24350/CIRM.V.19690103.
Bibliographic Information
- Verónica Becher
- Affiliation: Departamento de Computación, Facultad de Ciencias Exactas y Naturales & ICC, Universidad de Buenos Aires & CONICET, Argentina
- MR Author ID: 368040
- ORCID: 0000-0002-5425-8563
- Email: vbecher@dc.uba.ar
- Gabriel Sac Himelfarb
- Affiliation: Departamento de Matemática & Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- ORCID: 0000-0003-1117-7023
- Email: gabrielsachimelfarb@gmail.com
- Received by editor(s): March 14, 2022
- Received by editor(s) in revised form: September 19, 2022
- Published electronically: January 31, 2023
- Additional Notes: The second author was supported by the student fellowship “Beca de Estímulo a las Vocaciones Científicas” convocatoria 2020, Consejo Interuniversitario Nacional, Argentina. The first author was supported by Agencia Nacional de Promoción Científica y Tecnológica grant PICT-2018-02315 and by Universidad de Buenos Aires grant Ubacyt 20020170100309BA.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 1453-1466
- MSC (2020): Primary 11K16, 05A05, 60G55
- DOI: https://doi.org/10.1090/mcom/3806
- MathSciNet review: 4550334