On invariable generation of alternating groups by elements of prime and prime power order
HTML articles powered by AMS MathViewer
- by Robert M. Guralnick, John Shareshian and Russ Woodroofe;
- Math. Comp. 92 (2023), 1349-1361
- DOI: https://doi.org/10.1090/mcom/3807
- Published electronically: January 6, 2023
- HTML | PDF | Request permission
Abstract:
We verify that every alternating group of degree at most one quadrillion is invariably generated by an element of prime order together with an element of prime power order.References
- Peter J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), no. 1, 1–22. MR 599634, DOI 10.1112/blms/13.1.1
- Sílvia Casacuberta, On the divisibility of binomial coefficients, Ars Math. Contemp. 19 (2020), no. 2, 297–309. MR 4183153, DOI 10.26493/1855-3974.2103.e84
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), no. 1, 23–46.
- Richard Crandall and Carl Pomerance, Prime numbers, 2nd ed., Springer, New York, 2005. A computational perspective. MR 2156291
- Eloisa Detomi and Andrea Lucchini, Invariable generation of permutation groups, Arch. Math. (Basel) 104 (2015), no. 4, 301–309. MR 3325763, DOI 10.1007/s00013-015-0749-2
- Eloisa Detomi and Andrea Lucchini, Invariable generation with elements of coprime prime-power orders, J. Algebra 423 (2015), 683–701. MR 3283736, DOI 10.1016/j.jalgebra.2014.10.037
- John D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992), no. 1-3, 25–39. MR 1180190, DOI 10.1016/0012-365X(92)90129-4
- John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR 1409812, DOI 10.1007/978-1-4612-0731-3
- Silvio Dolfi, Robert M. Guralnick, Marcel Herzog, and Cheryl E. Praeger, A new solvability criterion for finite groups, J. Lond. Math. Soc. (2) 85 (2012), no. 2, 269–281. MR 2901064, DOI 10.1112/jlms/jdr041
- Sean Eberhard, Kevin Ford, and Ben Green, Invariable generation of the symmetric group, Duke Math. J. 166 (2017), no. 8, 1573–1590. MR 3659942, DOI 10.1215/00127094-0000007X
- The GAP Group, GAP – groups, algorithms, and programming, version 4.11.0, 2020.
- Daniele Garzoni and Andrea Lucchini, Minimal invariable generating sets, J. Pure Appl. Algebra 224 (2020), no. 1, 218–238. MR 3986419, DOI 10.1016/j.jpaa.2019.05.004
- Andrew Granville, Smooth numbers: computational number theory and beyond, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 267–323. MR 2467549
- Robert Guralnick and Gunter Malle, Simple groups admit Beauville structures, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 694–721. MR 2927804, DOI 10.1112/jlms/jdr062
- R. M. Guralnick, J. Shareshian, and R. Woodroofe, Invgen: invariable generation of alternating groups, GitHub RussWoodroofe/invgen, January 2022, GAP and C source code.
- R. M. Guralnick, J. Shareshian, and R. Woodroofe, Smooth numbers in large prime gaps, Zenodo, February 2022, Dataset, DOI 10.5281/zenodo.5914767.
- Glyn Harman, Prime-detecting sieves, London Mathematical Society Monographs Series, vol. 33, Princeton University Press, Princeton, NJ, 2007. MR 2331072, DOI 10.5281/zenodo.5914767
- Chaohua Jia and Ming-Chit Liu, On the largest prime factor of integers, Acta Arith. 95 (2000), no. 1, 17–48. MR 1787203, DOI 10.4064/aa-95-1-17-48
- Gareth A. Jones, Primitive permutation groups containing a cycle, Bull. Aust. Math. Soc. 89 (2014), no. 1, 159–165. MR 3163014, DOI 10.1017/S000497271300049X
- Camille Jordan, Sur la limite du degré des groupes primitifs qui contiennent une substitution donnée, J. Reine Angew. Math. 79 (1875), 248–258 (French). MR 1579643, DOI 10.1515/crll.1875.79.248
- W. M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302–314. MR 2852243, DOI 10.1016/j.jalgebra.2011.09.022
- Carlisle S. H. King, Generation of finite simple groups by an involution and an element of prime order, J. Algebra 478 (2017), 153–173. MR 3621666, DOI 10.1016/j.jalgebra.2016.12.031
- Martin W. Liebeck and Jan Saxl, Primitive permutation groups containing an element of large prime order, J. London Math. Soc. (2) 31 (1985), no. 2, 237–249. MR 809945, DOI 10.1112/jlms/s2-31.2.237
- Andrea Lucchini, The Chebotarev invariant of a finite group: a conjecture of Kowalski and Zywina, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4549–4562. MR 3856127, DOI 10.1090/proc/13805
- Kaisa Matomäki, Almost primes in almost all very short intervals, J. Lond. Math. Soc. (2) 106 (2022), no. 2, 1061–1097. MR 4477211, DOI 10.1112/jlms.12592
- Eilidh McKemmie, Invariable generation of finite classical groups, J. Algebra 585 (2021), 592–615. MR 4282649, DOI 10.1016/j.jalgebra.2021.06.020
- Robin Pemantle, Yuval Peres, and Igor Rivin, Four random permutations conjugated by an adversary generate $\mathcal S_n$ with high probability, Random Structures Algorithms 49 (2016), no. 3, 409–428. MR 3545822, DOI 10.1002/rsa.20632
- Cheryl E. Praeger, Primitive permutation groups containing an element of order $p$ of small degree, $p$ a prime, J. Algebra 34 (1975), 540–546. MR 399221, DOI 10.1016/0021-8693(75)90175-1
- Cheryl E. Praeger, Primitive permutation groups containing a $p$-element of small degree, $p$ a prime. II, J. Algebra 42 (1976), no. 1, 278–293. MR 453850, DOI 10.1016/0021-8693(76)90041-7
- Cheryl E. Praeger, On elements of prime order in primitive permutation groups, J. Algebra 60 (1979), no. 1, 126–157. MR 549101, DOI 10.1016/0021-8693(79)90111-X
- R. A. Rankin, The Difference between Consecutive Prime Numbers, J. London Math. Soc. 13 (1938), no. 4, 242–247. MR 1574971, DOI 10.1112/jlms/s1-13.4.242
- Joseph J. Rotman, An introduction to the theory of groups, 4th ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR 1307623, DOI 10.1007/978-1-4612-4176-8
- John Shareshian and Russ Woodroofe, Order complexes of coset posets of finite groups are not contractible, Adv. Math. 291 (2016), 758–773. MR 3459029, DOI 10.1016/j.aim.2015.10.018
- John Shareshian and Russ Woodroofe, Divisibility of binomial coefficients and generation of alternating groups, Pacific J. Math. 292 (2018), no. 1, 223–238. MR 3708265, DOI 10.2140/pjm.2018.292.223
- Joni Teräväinen, Almost primes in almost all short intervals, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 2, 247–281. MR 3530507, DOI 10.1017/S0305004116000232
- J. Teräväinen, Almost all alternating groups are invariably generated by two elements of prime order, arXiv:2203.05427, Preprint, 2022.
- Kim Walisch, Primesieve library, 2010–2022, https://github.com/kimwalisch/primesieve/.
Bibliographic Information
- Robert M. Guralnick
- Affiliation: Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., Los Angeles, California 90089-2532
- MR Author ID: 78455
- ORCID: 0000-0002-9094-857X
- Email: guralnic@usc.edu
- John Shareshian
- Affiliation: Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri 63130
- MR Author ID: 618746
- Email: jshareshian@wustl.edu
- Russ Woodroofe
- Affiliation: Univerza na Primorskem, Glagoljaška 8, 6000 Koper, Slovenia
- MR Author ID: 656572
- ORCID: 0000-0002-8199-3483
- Email: russ.woodroofe@famnit.upr.si
- Received by editor(s): April 26, 2022
- Received by editor(s) in revised form: October 11, 2022
- Published electronically: January 6, 2023
- Additional Notes: Work of the first author was partially supported by NSF Grant DMS-1901595 and Simons Foundation Fellowship 609771. Work of the second author was supported in part by NSF Grant DMS 1518389. Work of the third author was supported in part by the Slovenian Research Agency research program P1-0285 and research projects J1-9108, N1-0160, J1-2451, J3-3003.
Dataset: doi:10.5281/zenodo.5914767; Code: doi:10.5281/zenodo.7503997 - © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 1349-1361
- MSC (2020): Primary 20D06, 20B30, 11Y99
- DOI: https://doi.org/10.1090/mcom/3807
- MathSciNet review: 4550329