Positivity of the determinants of the partition function and the overpartition function
HTML articles powered by AMS MathViewer
- by Larry X. W. Wang and Neil N. Y. Yang;
- Math. Comp. 92 (2023), 1383-1402
- DOI: https://doi.org/10.1090/mcom/3810
- Published electronically: January 31, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we give an iterated approach to concern with the positivity of \begin{equation*} \det \ (p(n-i+j))_{1\leq i,j\leq k}, \end{equation*} where $p(n)$ is the partition function. We first apply a general method to prove that for given $k_1,k_2,m_1,m_2$, one can find a threshold $N(k_1,k_2,m_1,m_2)$ such that for $n>N(k_1,k_2,m_1,m_2)$, \begin{equation*} \begin {vmatrix} p(n-k_1+m_1) & p(n+m_1) & p(n+m_1+m_2)\\ p(n-k_1) & p(n) & p(n+m_2)\\ p(n-k_1-k_2) & p(n-k_2) & p(n-k_2+m_2) \end{vmatrix}>0. \end{equation*} Based on this result, we will prove that for $n\geq 656$, $\det \ (p(n-i+j))_{1\leq i,j\leq 4}>0$. Employing the same technique, we will show that determinants $({\bar p}(n-i+j))_{1\leq i,j\leq k}$ are positive for $k=3 \text { and } 4$ for overpartition ${\bar p}(n)$. Furthermore, we will give an outline of how to prove the positivity of $\det \ (p(n-i+j))_{1\leq i,j\leq k}$ for general $k$.References
- George Boros and Victor Moll, Irresistible integrals, Cambridge University Press, Cambridge, 2004. Symbolics, analysis and experiments in the evaluation of integrals. MR 2070237, DOI 10.1017/CBO9780511617041
- William Y. C. Chen, Dennis X. Q. Jia, and Larry X. W. Wang, Higher order Turán inequalities for the partition function, Trans. Amer. Math. Soc. 372 (2019), no. 3, 2143–2165. MR 3976587, DOI 10.1090/tran/7707
- Sylvie Corteel and Jeremy Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1623–1635. MR 2034322, DOI 10.1090/S0002-9947-03-03328-2
- George Csordas, Timothy S. Norfolk, and Richard S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), no. 2, 521–541. MR 846596, DOI 10.1090/S0002-9947-1986-0846596-4
- Thomas Craven and George Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math. 136 (1989), no. 2, 241–260. MR 978613, DOI 10.2140/pjm.1989.136.241
- Thomas Craven and George Csordas, Karlin’s conjecture and a question of Pólya, Rocky Mountain J. Math. 35 (2005), no. 1, 61–82. MR 2116474, DOI 10.1216/rmjm/1181069768
- George Csordas and Dimitar K. Dimitrov, Conjectures and theorems in the theory of entire functions, Numer. Algorithms 25 (2000), no. 1-4, 109–122. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999). MR 1827149, DOI 10.1023/A:1016604906346
- George Csordas and Richard S. Varga, Moment inequalities and the Riemann hypothesis, Constr. Approx. 4 (1988), no. 2, 175–198. MR 932653, DOI 10.1007/BF02075457
- Stephen DeSalvo and Igor Pak, Log-concavity of the partition function, Ramanujan J. 38 (2015), no. 1, 61–73. MR 3396486, DOI 10.1007/s11139-014-9599-y
- Benjamin Engel, Log-concavity of the overpartition function, Ramanujan J. 43 (2017), no. 2, 229–241. MR 3649009, DOI 10.1007/s11139-015-9762-0
- Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA 116 (2019), no. 23, 11103–11110. MR 3963874, DOI 10.1073/pnas.1902572116
- Michael J. Griffin, Ken Ono, Larry Rolen, Jesse Thorner, Zachary Tripp, and Ian Wagner, Jensen polynomials for the Riemann xi-function, Adv. Math. 397 (2022), Paper No. 108186, 17. MR 4366225, DOI 10.1016/j.aim.2022.108186
- Qing-Hu Hou and Zuo-Ru Zhang, $r$-log-concavity of partition functions, Ramanujan J. 48 (2019), no. 1, 117–129. MR 3902498, DOI 10.1007/s11139-017-9975-5
- J. L. W. V. Jensen, Recherches sur la théorie des équations, Acta Math. 36 (1913), no. 1, 181–195 (French). MR 1555086, DOI 10.1007/BF02422380
- Dennis X. Q. Jia and Larry X. W. Wang, Determinantal inequalities for the partition function, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 3, 1451–1466. MR 4091068, DOI 10.1017/prm.2018.144
- S. Karlin, Total Positivity, Stanford University Press, Stanford, 1968.
- Hannah Larson and Ian Wagner, Hyperbolicity of the partition Jensen polynomials, Res. Number Theory 5 (2019), no. 2, Paper No. 19, 12. MR 3974675, DOI 10.1007/s40993-019-0157-y
- Edward Y. S. Liu and Helen W. J. Zhang, Inequalities for the overpartition function, Ramanujan J. 54 (2021), no. 3, 485–509. MR 4231707, DOI 10.1007/s11139-019-00227-z
- D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938), no. 2, 271–295. MR 1501943, DOI 10.1090/S0002-9947-1938-1501943-5
- Yu. V. Matiyasevich, Yet another machine experiment in support of Riemann’s conjecture, Kibernetika (Kiev) 6 (1982), 10, 22 (Russian, with English summary); English transl., Cybernetics 18 (1982), no. 6, 705–707 (1983). MR 716432, DOI 10.1007/BF01069156
- G. Mukherjee, Inequalities for the overpartition function arising from determinants, arXiv:2201.07840.
- Jean-Louis Nicolas, Sur les entiers $N$ pour lesquels il y a beaucoup de groupes abéliens d’ordre $N$, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 1–16, ix (French, with English summary). MR 513879, DOI 10.5802/aif.714
- John Nuttall, Wronskians, cumulants, and the Riemann hypothesis, Constr. Approx. 38 (2013), no. 2, 193–212. MR 3097044, DOI 10.1007/s00365-013-9200-8
- Cormac O’Sullivan, Zeros of Jensen polynomials and asymptotics for the Riemann xi function, Res. Math. Sci. 8 (2021), no. 3, Paper No. 46, 27. MR 4287341, DOI 10.1007/s40687-020-00240-5
- G. Pólya, Über die algebraisch-function theoretischen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7 (1927), 3–33.
- H. Rademacher, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. 23 (1937), 78–84.
- Ian Wagner, On a new class of Laguerre-Pólya type functions with applications in number theory, Pacific J. Math. 320 (2022), no. 1, 177–192. MR 4496097, DOI 10.2140/pjm.2022.320.177
- Larry X. W. Wang, Gary Y. B. Xie, and Andy Q. Zhang, Finite difference of the overpartition function, Adv. in Appl. Math. 92 (2018), 51–72. MR 3699113, DOI 10.1016/j.aam.2017.06.001
- Herbert S. Zuckerman, On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Amer. Math. Soc. 45 (1939), no. 2, 298–321. MR 1501993, DOI 10.1090/S0002-9947-1939-1501993-X
Bibliographic Information
- Larry X. W. Wang
- Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People’s Republic of China; and Department of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
- MR Author ID: 845775
- Email: wsw82@nankai.edu.cn
- Neil N. Y. Yang
- Affiliation: Department of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
- Email: 1910132@mail.nankai.edu.cn
- Received by editor(s): December 24, 2021
- Received by editor(s) in revised form: August 14, 2022
- Published electronically: January 31, 2023
- Additional Notes: This work was supported by the National Natural Science Foundation of China (grant number 12171254) and the Natural Science Foundation of Tianjin (grant number 19JCYBJC30100).
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 1383-1402
- MSC (2020): Primary 05A20, 11P82
- DOI: https://doi.org/10.1090/mcom/3810
- MathSciNet review: 4550331