Computing the nonfree locus of the moduli space of arrangements and Terao’s freeness conjecture
HTML articles powered by AMS MathViewer
- by Mohamed Barakat and Lukas Kühne;
- Math. Comp. 92 (2023), 1431-1452
- DOI: https://doi.org/10.1090/mcom/3812
- Published electronically: January 31, 2023
- HTML | PDF
Abstract:
In this paper, we show how to compute, using Fitting ideals, the nonfree locus of the moduli space of arrangements of a rank $3$ simple matroid, i.e., the subset of all points of the moduli space which parametrize nonfree arrangements. Our approach relies on the so-called Ziegler restriction and Yoshinaga’s freeness criterion for multiarrangements. We use these computations to verify Terao’s freeness conjecture for rank $3$ central arrangements with up to $14$ hyperplanes in any characteristic.References
- T. Abe, M. Cuntz, H. Kawanoue, and T. Nozawa, Non-recursive freeness and non-rigidity, Discrete Math. 339 (2016), no. 5, 1430–1449. MR 3475556, DOI 10.1016/j.disc.2015.12.017
- Takuro Abe and Masahiko Yoshinaga, Free arrangements and coefficients of characteristic polynomials, Math. Z. 275 (2013), no. 3-4, 911–919. MR 3127042, DOI 10.1007/s00209-013-1165-6
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao’s freeness conjecture, SIAM J. Discrete Math. 35 (2021), no. 2, 1201–1223. MR 4269491, DOI 10.1137/19M1296744
- Mohamed Barakat and Michael Cuntz, Coxeter and crystallographic arrangements are inductively free, Adv. Math. 229 (2012), no. 1, 691–709. MR 2854188, DOI 10.1016/j.aim.2011.09.011
- M. Barakat and L. Kühne, $\mathtt {matroids\_split\_public}$ – a database collection for rank $3$ integrally split simple matroids, 2019, https://homalg-project.github.io/pkg/MatroidGeneration.
- M. Barakat and L. Kühne, A mechanical proof of a statement about images of pullbacks in abelian categories, 2021, https://homalg-project.github.io/nb/ImageOfPullback/.
- M. Barakat, T. Kuhmichel, and M. Lange-Hegermann, $\mathtt {ZariskiFrames}$ – (co)frames/locales of Zariski closed/open subsets of affine, projective, or toric varieties, 2018–2019, https://homalg-project.github.io/pkg/ZariskiFrames.
- Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293. MR 2795737, DOI 10.1142/S0219498811004562
- Mohamed Barakat and Markus Lange-Hegermann, An algorithmic approach to Chevalley’s theorem on images of rational morphisms between affine varieties, Math. Comp. 91 (2021), no. 333, 451–490. MR 4350545, DOI 10.1090/mcom/3632
- M. Barakat, M. Lange-Hegermann, A. Lorenz, and O. Motsak, The $\mathtt {GradedModules}$ package – a $\mathtt {homalg}$ based package for the Abelian category of finitely presented graded modules over computable graded rings, 2008–2020, https://homalg-project.github.io/pkg/GradedModules.
- M. Barakat, M. Lange-Hegermann, and S. Posur, Elimination via saturation, arXiv:1707.00925, 2017.
- M. Barakat and K. Saleh, $\mathtt {IntrinsicGradedModules}$ – finitely presented graded modules over computable graded rings allowing multiple presentations and the notion of elements, 2021, https://homalg-project.github.io/pkg/IntrinsicGradedModules.
- Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, 2019, http://www.singular.uni-kl.de.
- Alexandru Dimca, Denis Ibadula, and Anca Măcinic, Freeness for 13 lines arrangements is combinatorial, Discrete Math. 342 (2019), no. 8, 2445–2453. MR 3955589, DOI 10.1016/j.disc.2019.05.016
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- S. Gutsche, S. Posur, and Ø. Skartsæterhagen, On the syntax and semantics of $\mathtt {CAP}$, Proceedings of the Workshop Computer Algebra in the Age of Types (Hagenberg, Austria, 17 August 2018), 2018, http://ceur-ws.org/Vol-2307/.
- homalg project authors, The $\mathtt {homalg}$ project – algorithmic homological algebra, 2003–2020, https://homalg-project.github.io/prj/homalg_project.
- M. Leuner, $\mathtt {alcove}$ – algebraic combinatorics package for $\mathsf {GAP}$, 2013–2019, https://github.com/martin-leuner/alcove.
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR 2849819, DOI 10.1093/acprof:oso/9780198566946.001.0001
- Sebastian Posur, Methods of constructive category theory, Representations of algebras, geometry and physics, Contemp. Math., vol. 769, Amer. Math. Soc., [Providence], RI, [2021] ©2021, pp. 157–208. MR 4254099, DOI 10.1090/conm/769/15417
- Sebastian Posur, On free abelian categories for theorem proving, J. Pure Appl. Algebra 226 (2022), no. 7, Paper No. 106994, 19. MR 4355949, DOI 10.1016/j.jpaa.2021.106994
- Masahiko Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126–134. MR 2105827, DOI 10.1112/S0024609304003704
- Masahiko Yoshinaga, Free arrangements over finite field, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 10, 179–182. MR 2303355
- Sergey Yuzvinsky, Free and locally free arrangements with a given intersection lattice, Proc. Amer. Math. Soc. 118 (1993), no. 3, 745–752. MR 1160307, DOI 10.1090/S0002-9939-1993-1160307-6
- Günter M. Ziegler, Multiarrangements of hyperplanes and their freeness, Singularities (Iowa City, IA, 1986) Contemp. Math., vol. 90, Amer. Math. Soc., Providence, RI, 1989, pp. 345–359. MR 1000610, DOI 10.1090/conm/090/1000610
- Günter M. Ziegler, Matroid representations and free arrangements, Trans. Amer. Math. Soc. 320 (1990), no. 2, 525–541. MR 986703, DOI 10.1090/S0002-9947-1990-0986703-7
Bibliographic Information
- Mohamed Barakat
- Affiliation: Department of mathematics, University of Siegen, 57068 Siegen, Germany
- MR Author ID: 706483
- ORCID: 0000-0003-3642-4190
- Email: mohamed.barakat@uni-siegen.de
- Lukas Kühne
- Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; and Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
- Email: lukas.kuehne@math.uni-bielefeld.de
- Received by editor(s): January 24, 2022
- Received by editor(s) in revised form: September 30, 2022
- Published electronically: January 31, 2023
- Additional Notes: An extended abstract of this paper appeared in the Oberwolfach workshop report 5/2021 and in the Computeralgebra Rundbrief Ausgabe 68.
- © Copyright 2023 by the authors.
- Journal: Math. Comp. 92 (2023), 1431-1452
- MSC (2020): Primary 05B35, 52C35, 32S22, 14Q20
- DOI: https://doi.org/10.1090/mcom/3812
- MathSciNet review: 4550333