Mixed methods and lower eigenvalue bounds
HTML articles powered by AMS MathViewer
- by Dietmar Gallistl;
- Math. Comp. 92 (2023), 1491-1509
- DOI: https://doi.org/10.1090/mcom/3820
- Published electronically: February 3, 2023
- HTML | PDF
Abstract:
It is shown how mixed finite element methods for symmetric positive definite eigenvalue problems related to partial differential operators can provide guaranteed lower eigenvalue bounds. The method is based on a classical compatibility condition (inclusion of kernels) of the mixed scheme and on local constants related to compact embeddings, which are often known explicitly. Applications include scalar second-order elliptic operators, linear elasticity, and the Steklov eigenvalue problem.References
- Gabriel Acosta and Ricardo G. Durán, Divergence operator and related inequalities, SpringerBriefs in Mathematics, Springer, New York, 2017. MR 3618122, DOI 10.1007/978-1-4939-6985-2
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1–155. MR 2269741, DOI 10.1017/S0962492906210018
- Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401–419. MR 1930384, DOI 10.1007/s002110100348
- Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. MR 2652780, DOI 10.1017/S0962492910000012
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Dietrich Braess, Finite elements, 3rd ed., Cambridge University Press, Cambridge, 2007. Theory, fast solvers, and applications in elasticity theory; Translated from the German by Larry L. Schumaker. MR 2322235, DOI 10.1017/CBO9780511618635
- Zhiqiang Cai and Yanqiu Wang, A multigrid method for the pseudostress formulation of Stokes problems, SIAM J. Sci. Comput. 29 (2007), no. 5, 2078–2095. MR 2350022, DOI 10.1137/060661429
- Carsten Carstensen and Dietmar Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. 126 (2014), no. 1, 33–51. MR 3149071, DOI 10.1007/s00211-013-0559-z
- C. Carstensen, D. Gallistl, and M. Schedensack, $L^2$ best approximation of the elastic stress in the Arnold-Winther FEM, IMA J. Numer. Anal. 36 (2016), no. 3, 1096–1119. MR 3523577, DOI 10.1093/imanum/drv051
- Carsten Carstensen and Joscha Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp. 83 (2014), no. 290, 2605–2629. MR 3246802, DOI 10.1090/S0025-5718-2014-02833-0
- C. Carstensen and S. Puttkammer, Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates, arXiv:2203.01028, 2022.
- Long Chen and Xuehai Huang, Finite elements for $\textrm {div\,div}$ conforming symmetric tensors in three dimensions, Math. Comp. 91 (2022), no. 335, 1107–1142. MR 4405490, DOI 10.1090/mcom/3700
- Martin Costabel and Monique Dauge, On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 873–898. MR 3356990, DOI 10.1007/s00205-015-0845-2
- Dietmar Gallistl, A posteriori error analysis of the inf-sup constant for the divergence, SIAM J. Numer. Anal. 59 (2021), no. 1, 249–264. MR 4204339, DOI 10.1137/20M1332529
- D. Gallistl and V. Olkhovskiy, Computational lower bounds of the Maxwell eigenvalues, SIAM J. Numer. Anal. (2022), In press.
- Johnny Guzmán and Michael Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp. 83 (2014), no. 285, 15–36. MR 3120580, DOI 10.1090/S0025-5718-2013-02753-6
- C. O. Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and Babuška-Aziz, Arch. Rational Mech. Anal. 82 (1983), no. 2, 165–179. MR 687553, DOI 10.1007/BF00250935
- R. S. Laugesen and B. A. Siudeja, Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality, J. Differential Equations 249 (2010), no. 1, 118–135. MR 2644129, DOI 10.1016/j.jde.2010.02.020
- Xuefeng Liu and Shin’ichi Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal. 51 (2013), no. 3, 1634–1654. MR 3061473, DOI 10.1137/120878446
- L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). MR 117419, DOI 10.1007/BF00252910
- Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, and Shin’ichi Oishi, Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation, Jpn. J. Ind. Appl. Math. 31 (2014), no. 3, 665–679. MR 3277275, DOI 10.1007/s13160-014-0156-2
- Alexander Weinstein and William Stenger, Methods of intermediate problems for eigenvalues, Mathematics in Science and Engineering, Vol. 89, Academic Press, New York-London, 1972. Theory and ramifications. MR 477971
- Chun’guang You, Hehu Xie, and Xuefeng Liu, Guaranteed eigenvalue bounds for the Steklov eigenvalue problem, SIAM J. Numer. Anal. 57 (2019), no. 3, 1395–1410. MR 3961991, DOI 10.1137/18M1189592
Bibliographic Information
- Dietmar Gallistl
- Affiliation: Universität Jena, Institut für Mathematik, 07743 Jena, Germany
- MR Author ID: 1020312
- Email: dietmar.gallistl@uni-jena.de
- Received by editor(s): April 2, 2022
- Received by editor(s) in revised form: October 19, 2022, and December 6, 2022
- Published electronically: February 3, 2023
- Additional Notes: The author was supported by the ERC through the Starting Grant DAFNE, agreement ID 891734.
- © Copyright 2023 by Dietmar Gallistl.
- Journal: Math. Comp. 92 (2023), 1491-1509
- MSC (2020): Primary 65N25
- DOI: https://doi.org/10.1090/mcom/3820
- MathSciNet review: 4570331