Interpolation operator on negative Sobolev spaces
HTML articles powered by AMS MathViewer
- by Lars Diening, Johannes Storn and Tabea Tscherpel;
- Math. Comp. 92 (2023), 1511-1541
- DOI: https://doi.org/10.1090/mcom/3824
- Published electronically: February 7, 2023
- HTML | PDF | Request permission
Abstract:
We introduce a Scott–Zhang type projection operator mapping to Lagrange elements for arbitrary polynomial order. In addition to the usual properties, this operator is compatible with duals of first order Sobolev spaces. More specifically, it is stable in the corresponding negative norms and allows for optimal rates of convergence. We discuss alternative operators with similar properties. As applications of the operator we prove interpolation error estimates for parabolic problems and smoothen rough right-hand sides in a least squares finite element method.References
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- Jan Blechta, Josef Málek, and Martin Vohralík, Localization of the $W^{-1,q}$ norm for local a posteriori efficiency, IMA J. Numer. Anal. 40 (2020), no. 2, 914–950. MR 4092274, DOI 10.1093/imanum/drz002
- Pavel B. Bochev and Max D. Gunzburger, Least-squares finite element methods, Applied Mathematical Sciences, vol. 166, Springer, New York, 2009. MR 2490235, DOI 10.1007/b13382
- James H. Bramble, Joseph E. Pasciak, and Olaf Steinbach, On the stability of the $L^2$ projection in $H^1(\Omega )$, Math. Comp. 71 (2002), no. 237, 147–156. MR 1862992, DOI 10.1090/S0025-5718-01-01314-X
- James H. Bramble, Joseph E. Pasciak, and Panayot S. Vassilevski, Computational scales of Sobolev norms with application to preconditioning, Math. Comp. 69 (2000), no. 230, 463–480. MR 1651742, DOI 10.1090/S0025-5718-99-01106-0
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187–1202. MR 1736895, DOI 10.1051/m2an:1999140
- Carsten Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for $H^1$-stability of the $L^2$-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157–163. MR 1862993, DOI 10.1090/S0025-5718-01-01316-3
- C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. MR 3170325, DOI 10.1016/j.camwa.2013.12.003
- C. Carstensen and H. Rabus, Axioms of adaptivity with separate marking for data resolution, SIAM J. Numer. Anal. 55 (2017), no. 6, 2644–2665. MR 3719030, DOI 10.1137/16M1068050
- Carsten Carstensen and Johannes Storn, Asymptotic exactness of the least-squares finite element residual, SIAM J. Numer. Anal. 56 (2018), no. 4, 2008–2028. MR 3820383, DOI 10.1137/17M1125972
- Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587. MR 1706735, DOI 10.1137/S003614299732334X
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- K. Chrysafinos and L. S. Hou, Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions, SIAM J. Numer. Anal. 40 (2002), no. 1, 282–306. MR 1921920, DOI 10.1137/S0036142900377991
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto, Convergence rates of AFEM with $H^{-1}$ data, Found. Comput. Math. 12 (2012), no. 5, 671–718. MR 2970853, DOI 10.1007/s10208-012-9120-1
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- Lars Diening, Christian Kreuzer, and Rob Stevenson, Instance optimality of the adaptive maximum strategy, Found. Comput. Math. 16 (2016), no. 1, 33–68. MR 3451423, DOI 10.1007/s10208-014-9236-6
- L. Diening and M. Růžička, Interpolation operators in Orlicz-Sobolev spaces, Numer. Math. 107 (2007), no. 1, 107–129. MR 2317830, DOI 10.1007/s00211-007-0079-9
- Lars Diening and Johannes Storn, A space-time DPG method for the heat equation, Comput. Math. Appl. 105 (2022), 41–53. MR 4345259, DOI 10.1016/j.camwa.2021.11.013
- Lars Diening, Johannes Storn, and Tabea Tscherpel, On the Sobolev and $L^p$-stability of the $L^2$-projection, SIAM J. Numer. Anal. 59 (2021), no. 5, 2571–2607. MR 4320894, DOI 10.1137/20M1358013
- Alexandre Ern and Jean-Luc Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. MR 3702417, DOI 10.1051/m2an/2016066
- Alexandre Ern and Jean-Luc Guermond, Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, vol. 72, Springer, Cham, [2021] ©2021. MR 4242224, DOI 10.1007/978-3-030-56341-7
- Thomas Führer, Multilevel decompositions and norms for negative order Sobolev spaces, Math. Comp. 91 (2021), no. 333, 183–218. MR 4350537, DOI 10.1090/mcom/3674
- Thomas Führer, Norbert Heuer, and Michael Karkulik, MINRES for second-order PDEs with singular data, SIAM J. Numer. Anal. 60 (2022), no. 3, 1111–1135. MR 4425909, DOI 10.1137/21M1457023
- Thomas Führer and Michael Karkulik, Space-time least-squares finite elements for parabolic equations, Comput. Math. Appl. 92 (2021), 27–36. MR 4242919, DOI 10.1016/j.camwa.2021.03.004
- Fernando D. Gaspoz, Claus-Justus Heine, and Kunibert G. Siebert, Optimal grading of the newest vertex bisection and $H^1$-stability of the $L_2$-projection, IMA J. Numer. Anal. 36 (2016), no. 3, 1217–1241. MR 3523582, DOI 10.1093/imanum/drv044
- Christian Kreuzer and Andreas Veeser, Oscillation in a posteriori error estimation, Numer. Math. 148 (2021), no. 1, 43–78. MR 4265898, DOI 10.1007/s00211-021-01194-8
- Ulrich Langer, Stephen E. Moore, and Martin Neumüller, Space-time isogeometric analysis of parabolic evolution problems, Comput. Methods Appl. Mech. Engrg. 306 (2016), 342–363. MR 3502571, DOI 10.1016/j.cma.2016.03.042
- Ulrich Langer, Olaf Steinbach, Fredi Tröltzsch, and Huidong Yang, Unstructured space-time finite element methods for optimal control of parabolic equations, SIAM J. Sci. Comput. 43 (2021), no. 2, A744–A771. MR 4223221, DOI 10.1137/20M1330452
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- J. M. Melenk, $hp$-interpolation of nonsmooth functions and an application to $hp$-a posteriori error estimation, SIAM J. Numer. Anal. 43 (2005), no. 1, 127–155. MR 2177138, DOI 10.1137/S0036142903432930
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Olaf Steinbach, Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math. 15 (2015), no. 4, 551–566. MR 3403450, DOI 10.1515/cmam-2015-0026
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Rob Stevenson and Raymond van Venetië, Uniform preconditioners for problems of negative order, Math. Comp. 89 (2020), no. 322, 645–674. MR 4044445, DOI 10.1090/mcom/3481
- Rob Stevenson and Raymond van Venetië, Uniform preconditioners of linear complexity for problems of negative order, Comput. Methods Appl. Math. 21 (2021), no. 2, 469–478. MR 4235816, DOI 10.1515/cmam-2020-0052
- Rob Stevenson, Raymond van Venetië, and Jan Westerdiep, A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations, Adv. Comput. Math. 48 (2022), no. 3, Paper No. 17, 43. MR 4406581, DOI 10.1007/s10444-022-09930-w
- Rob Stevenson and Jan Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations, IMA J. Numer. Anal. 41 (2021), no. 1, 28–47. MR 4205051, DOI 10.1093/imanum/drz069
- F. Tantardini, Quasi-optimality in the backward Euler-Galerkin method for linear parabolic problems, Ph.D. Thesis, 2013.
- Francesca Tantardini and Andreas Veeser, The $L^2$-projection and quasi-optimality of Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 54 (2016), no. 1, 317–340. MR 3457701, DOI 10.1137/140996811
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- Andreas Veeser, Best error localizations for piecewise polynomial approximation of gradients, functions and functionals, Numerical mathematics and advanced applications—ENUMATH 2017, Lect. Notes Comput. Sci. Eng., vol. 126, Springer, Cham, 2019, pp. 357–365. MR 3976992, DOI 10.1007/978-3-319-96415-7_{3}1
- Andreas Veeser and Pietro Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. I—Abstract theory, SIAM J. Numer. Anal. 56 (2018), no. 3, 1621–1642. MR 3816182, DOI 10.1137/17M1116362
- Andreas Veeser and Pietro Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. III—Discontinuous Galerkin and other interior penalty methods, SIAM J. Numer. Anal. 56 (2018), no. 5, 2871–2894. MR 3857891, DOI 10.1137/17M1151675
- Andreas Veeser and Pietro Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. II—Overconsistency and classical nonconforming elements, SIAM J. Numer. Anal. 57 (2019), no. 1, 266–292. MR 3907927, DOI 10.1137/17M1151651
- Jinbiao Wu and Hui Zheng, Uniform convergence of multigrid methods for adaptive meshes, Appl. Numer. Math. 113 (2017), 109–123. MR 3588590, DOI 10.1016/j.apnum.2016.11.005
Bibliographic Information
- Lars Diening
- Affiliation: Department of Mathematics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany
- MR Author ID: 713774
- ORCID: 0000-0002-0523-3079
- Email: lars.diening@uni-bielefeld.de
- Johannes Storn
- Affiliation: Department of Mathematics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany
- MR Author ID: 1277144
- ORCID: 0000-0003-1520-6557
- Email: jstorn@math.uni-bielefeld.de
- Tabea Tscherpel
- Affiliation: Department of Mathematics, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany
- MR Author ID: 1378207
- ORCID: 0000-0002-5899-1279
- Email: tscherpel@mathematik.tu-darmstadt.de
- Received by editor(s): December 16, 2021
- Received by editor(s) in revised form: September 3, 2022
- Published electronically: February 7, 2023
- Additional Notes: The work of the authors was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 1511-1541
- MSC (2020): Primary 65D05, 65M15, 65N15, 65N30
- DOI: https://doi.org/10.1090/mcom/3824
- MathSciNet review: 4570332