Explicit bounds for products of primes in AP
HTML articles powered by AMS MathViewer
- by Ramachandran Balasubramanian, Olivier Ramaré and Priyamvad Srivastav;
- Math. Comp. 92 (2023), 2381-2411
- DOI: https://doi.org/10.1090/mcom/3853
- Published electronically: April 21, 2023
- HTML | PDF | Request permission
Abstract:
For all $q\ge 2$ and for all invertible residue classes $a$ modulo $q$, there exists a natural number that is congruent to $a$ modulo $q$ and that is the product of exactly three primes, all of which are below $(10^{15}q)^{5/2}$.References
- Ramachandran Balasubramanian, Olivier Ramaré, and Priyamvad Srivastav, Product of three primes in large arithmetic progressions, Int. J. Number Theory 19 (2023), no. 4, 843–857. MR 4555388, DOI 10.1142/S1793042123500422
- Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk, Sharper bounds for the Chebyshev function $\theta (x)$, Math. Comp. 90 (2021), no. 331, 2281–2315. MR 4280302, DOI 10.1090/mcom/3643
- Kh. Silleruelo, D. S. Ramana, and O. Ramare, Quotients and products of zero-density subsets of the set of positive integers, Tr. Mat. Inst. Steklova 296 (2017), no. Analiticheskaya i Kombinatornaya Teoriya Chisel, 58–71 (Russian, with Russian summary). English version published in Proc. Steklov Inst. Math. 296 (2017), no. 1, 52–64. MR 3640773, DOI 10.1134/S0371968517010058
- Henri Cohen, Francois Dress, and Mohamed El Marraki, Explicit estimates for summatory functions linked to the Möbius $\mu$-function. part 1, Funct. Approx. Comment. Math. 37 (2007), no. part 1, 51–63. MR 2357309, DOI 10.7169/facm/1229618741
- Daniele Dona, Harald A. Helfgott, and Sebastian Zuniga Alterman, Explicit $L^2$ bounds for the Riemann $\zeta$ function, J. Théor. Nombres Bordeaux 34 (2022), no. 1, 91–133 (English, with English and French summaries). MR 4450610, DOI 10.5802/jtnb.119
- P. Erdős, A. M. Odlyzko, and A. Sárközy, On the residues of products of prime numbers, Period. Math. Hungar. 18 (1987), no. 3, 229–239. MR 902525, DOI 10.1007/BF01848086
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- Christopher Hooley, On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 60–79. MR 304328, DOI 10.1515/crll.1972.255.60
- Junxian Li, Kyle Pratt, and George Shakan, A lower bound for the least prime in an arithmetic progression, Q. J. Math. 68 (2017), no. 3, 729–758. MR 3698292, DOI 10.1093/qmath/hax001
- L. Moser and R. A. MacLeod, The error term for the squarefree integers, Canad. Math. Bull. 9 (1966), 303–306. MR 200251, DOI 10.4153/CMB-1966-039-4
- Michael J. Mossinghoff, Tomás Oliveira e Silva, and Timothy S. Trudgian, The distribution of $k$-free numbers, Math. Comp. 90 (2021), no. 328, 907–929. MR 4194167, DOI 10.1090/mcom/3581
- Yoichi Motohashi, On some improvements of the Brun-Titchmarsh theorem, J. Math. Soc. Japan 26 (1974), 306–323. MR 337848, DOI 10.2969/jmsj/02620306
- Paul Pollack, The smallest prime that splits completely in an abelian number field, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1925–1934. MR 3182011, DOI 10.1090/S0002-9939-2014-12199-X
- Olivier Ramaré, Explicit estimates on several summatory functions involving the Moebius function, Math. Comp. 84 (2015), no. 293, 1359–1387. MR 3315512, DOI 10.1090/S0025-5718-2014-02914-1
- O. Ramaré, An explicit density estimate for Dirichlet $L$-series, Math. Comp. 85 (2016), no. 297, 325–356. MR 3404452, DOI 10.1090/mcom/2991
- Olivier Ramaré, Priyamvad Srivastav, and Oriol Serra, Product of primes in arithmetic progressions, Int. J. Number Theory 16 (2020), no. 4, 747–766. MR 4093381, DOI 10.1142/S1793042120500384
- Olivier Ramaré and Aled Walker, Products of primes in arithmetic progressions: a footnote in parity breaking, J. Théor. Nombres Bordeaux 30 (2018), no. 1, 219–225 (English, with English and French summaries). MR 3809717, DOI 10.5802/jtnb.1024
- Olivier Ramaré, Explicit average orders: news and problems, Number theory week 2017, Banach Center Publ., vol. 118, Polish Acad. Sci. Inst. Math., Warsaw, 2019, pp. 153–176. MR 3931261
- A. Rényi, Probability theory, North-Holland Series in Applied Mathematics and Mechanics, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Translated by László Vekerdi. MR 315747
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
- Enrique Treviño, The least inert prime in a real quadratic field, Math. Comp. 81 (2012), no. 279, 1777–1797. MR 2904602, DOI 10.1090/S0025-5718-2012-02579-8
Bibliographic Information
- Ramachandran Balasubramanian
- Affiliation: Institute of Mathematical Sciences, Taramani 600113, Chennai, India; and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar 400094, Mumbai, India
- MR Author ID: 193133
- ORCID: 0000-0002-8183-8379
- Email: balu@imsc.res.in
- Olivier Ramaré
- Affiliation: CNRS/Institut de Mathématiques de Marseille, Aix Marseille Université, U.M.R. 7373, Site Sud, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
- ORCID: 0000-0002-8765-0465
- Email: olivier.ramare@univ-amu.fr
- Priyamvad Srivastav
- Affiliation: Mathematisches Institut, Bunsenstrasse 3-5, 37073 Göttingen, Germany
- MR Author ID: 1193653
- Email: priyamvads@gmail.com
- Received by editor(s): January 12, 2022
- Received by editor(s) in revised form: September 5, 2022, March 8, 2023, and March 20, 2023
- Published electronically: April 21, 2023
- Additional Notes: The first and second authors had been partly supported by the Indo-French Centre for the Promotion of Advanced Research – CEFIPRA, project No. 5401-1. The first author was financially supported by the Indian National Science Academy through a distinguished professorship. The second author was supported by the joint FWF-ANR project Arithrand: FWF: I 4945-N and ANR-20-CE91-0006.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 2381-2411
- MSC (2020): Primary 11N13, 11A41; Secondary 11N37, 11B13
- DOI: https://doi.org/10.1090/mcom/3853
- MathSciNet review: 4593220