On the computation of general vector-valued modular forms
HTML articles powered by AMS MathViewer
- by Tobias Magnusson and Martin Raum
- Math. Comp. 92 (2023), 2861-2891
- DOI: https://doi.org/10.1090/mcom/3847
- Published electronically: May 23, 2023
- HTML | PDF
Abstract:
We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least $2$ associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.References
- Josh Alman and Virginia Vassilevska Williams, A refined laser method and faster matrix multiplication, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 2021, pp. 522–539. MR 4262465, DOI 10.1137/1.9781611976465.32
- Eran Assaf, Computing classical modular forms for arbitrary congruence subgroups, Arithmetic geometry, number theory, and computation, Simons Symp., Springer, Cham, [2021] ©2021, pp. 43–104. MR 4427960, DOI 10.1007/978-3-030-80914-0_{2}
- Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John E. Cremona, Maarten Derickx, Min Lee, David Lowry-Duda, David Roe, Andrew V. Sutherland, and John Voight, Computing classical modular forms, Arithmetic geometry, number theory, and computation, Simons Symp., Springer, Cham, [2021] ©2021, pp. 131–213. MR 4427962, DOI 10.1007/978-3-030-80914-0_{4}
- Karim Belabas and Henri Cohen, Modular forms in Pari/GP, Res. Math. Sci. 5 (2018), no. 3, Paper No. 37, 19. MR 3846373, DOI 10.1007/s40687-018-0155-z
- Lev A. Borisov and Paul E. Gunnells, Toric modular forms and nonvanishing of $L$-functions, J. Reine Angew. Math. 539 (2001), 149–165. MR 1863857, DOI 10.1515/crll.2001.071
- Lev A. Borisov and Paul E. Gunnells, Toric varieties and modular forms, Invent. Math. 144 (2001), no. 2, 297–325. MR 1826373, DOI 10.1007/PL00005802
- Lev A. Borisov and Paul E. Gunnells, Toric modular forms of higher weight, J. Reine Angew. Math. 560 (2003), 43–64. MR 1992801, DOI 10.1515/crll.2003.060
- Jan Hendrik Bruinier and Michael Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. MR 1875342, DOI 10.1007/s229-001-8027-1
- Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. MR 1625724, DOI 10.1007/s002220050232
- Daniel Bump, Lie groups, 2nd ed., Graduate Texts in Mathematics, vol. 225, Springer, New York, 2013. MR 3136522, DOI 10.1007/978-1-4614-8024-2
- Jan Hendrik Bruinier and Martin Westerholt-Raum, Kudla’s modularity conjecture and formal Fourier-Jacobi series, Forum Math. Pi 3 (2015), e7, 30. MR 3406827, DOI 10.1017/fmp.2015.6
- Miranda C. N. Cheng, John F. R. Duncan, and Jeffrey A. Harvey, Umbral moonshine and the Niemeier lattices, Res. Math. Sci. 1 (2014), Art. 3, 81. MR 3449012, DOI 10.1186/2197-9847-1-3
- Henri Cohen, Expansions at cusps and Petersson products in Pari/GP, Elliptic integrals, elliptic functions and modular forms in quantum field theory, Texts Monogr. Symbol. Comput., Springer, Cham, 2019, pp. 161–181. MR 3889557
- James Demmel, Ioana Dumitriu, and Olga Holtz, Fast linear algebra is stable, Numer. Math. 108 (2007), no. 1, 59–91. MR 2350185, DOI 10.1007/s00211-007-0114-x
- David S. Dummit and Richard M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 143–316 (French). MR 337993
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Moritz Dittmann, Riccardo Salvati Manni, and Nils R. Scheithauer, Harmonic theta series and the Kodaira dimension of $\mathcal A_6$, Algebra Number Theory 15 (2021), no. 1, 271–285. MR 4226989, DOI 10.2140/ant.2021.15.271
- Bas Edixhoven, Modular curves, modular forms, lattices, Galois representations, Computational aspects of modular forms and Galois representations, Ann. of Math. Stud., vol. 176, Princeton Univ. Press, Princeton, NJ, 2011, pp. 29–68. MR 2857087, DOI 10.1515/9781400839001
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson, Nemo/Hecke: computer algebra and number theory packages for the Julia programming language, ISSAC’17—Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2017, pp. 157–164. MR 3703682, DOI 10.1145/3087604.3087611
- The GAP Group, GAP – groups, algorithms, and programming, Version 4.11.1, 2021.
- Matthias R. Gaberdiel, Daniel Persson, Henrik Ronellenfitsch, and Roberto Volpato, Generalized Mathieu Moonshine, Commun. Number Theory Phys. 7 (2013), no. 1, 145–223. MR 3108775, DOI 10.4310/CNTP.2013.v7.n1.a5
- Valery Gritsenko, Cris Poor, and David S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015), 164–195. MR 3283174, DOI 10.1016/j.jnt.2014.07.028
- V. Gritsenko, N.-P. Skoruppa, and D. Zagier, Theta blocks, arXiv:1907.00188, 2019.
- Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2129747, DOI 10.1201/9781420035216
- Fredrik Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017), no. 8, 1281–1292. MR 3681746, DOI 10.1109/TC.2017.2690633
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin-New York, 1973, pp. 69–190. MR 447119
- Chris A. Kurth and Ling Long, Computations with finite index subgroups of $\textrm {PSL}_2(\Bbb Z)$ using Farey symbols, Advances in algebra and combinatorics, World Sci. Publ., Hackensack, NJ, 2008, pp. 225–242. MR 2440118, DOI 10.1142/9789812790019_{0}015
- Winfried Kohnen and Yves Martin, Products of two Eisenstein series and spaces of cusp forms of prime level, J. Ramanujan Math. Soc. 23 (2008), no. 4, 337–356. MR 2492572
- Kamal Khuri-Makdisi, Moduli interpretation of Eisenstein series, Int. J. Number Theory 8 (2012), no. 3, 715–748. MR 2904927, DOI 10.1142/S1793042112500418
- W. Kohnen and D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197–249. MR 803368
- B. Mazur, Rational points on modular curves, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin-New York, 1977, pp. 107–148. MR 450283
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
- H. Monien, The Sporadic Group $j2$, Hauptmodul and Belyi Map, arXiv:1703.05200, 2017.
- Pietro Mercuri and René Schoof, Modular forms invariant under non-split Cartan subgroups, Math. Comp. 89 (2020), no. 324, 1969–1991. MR 4081925, DOI 10.1090/mcom/3503
- Cris Poor, Jerry Shurman, and David S. Yuen, Theta block Fourier expansions, Borcherds products and a sequence of Newman and Shanks, Bull. Aust. Math. Soc. 98 (2018), no. 1, 48–59. MR 3819971, DOI 10.1017/S000497271800031X
- R. A. Rankin, The scalar product of modular forms, Proc. London Math. Soc. (3) 2 (1952), 198–217. MR 49231, DOI 10.1112/plms/s3-2.1.198
- Martin Raum and Jiacheng Xia, All modular forms of weight 2 can be expressed by Eisenstein series, Res. Number Theory 6 (2020), no. 3, Paper No. 32, 16. MR 4134182, DOI 10.1007/s40993-020-00207-z
- Nils R. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras, Invent. Math. 164 (2006), no. 3, 641–678. MR 2221135, DOI 10.1007/s00222-006-0500-5
- Nils R. Scheithauer, The Weil representation of $\textrm {SL}_2(\Bbb Z)$ and some applications, Int. Math. Res. Not. IMRN 8 (2009), 1488–1545. MR 2496771, DOI 10.1093/imrn/rnn166
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 450380, DOI 10.1007/978-1-4684-9458-7
- Nils-Peter Skoruppa, Jacobi forms of critical weight and Weil representations, Modular forms on Schiermonnikoog, Cambridge Univ. Press, Cambridge, 2008, pp. 239–266. MR 2512363, DOI 10.1017/CBO9780511543371.013
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- Volker Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR 248973, DOI 10.1007/BF02165411
- Jacob Sturm, On the congruence of modular forms, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 275–280. MR 894516, DOI 10.1007/BFb0072985
- The Sage Developers, SageMath, the Sage Mathematics software system (Version 9.2), 2020.
- Brandon Williams, Poincaré square series for the Weil representation, Ramanujan J. 47 (2018), no. 3, 605–650. MR 3874810, DOI 10.1007/s11139-017-9986-2
- Brandon Williams, Vector-valued Hirzebruch-Zagier series and class number sums, Res. Math. Sci. 5 (2018), no. 2, Paper No. 25, 13. MR 3799151, DOI 10.1007/s40687-018-0142-4
- Brandon Williams, Overpartition $M2$-rank differences, class number relations, and vector-valued mock Eisenstein series, Acta Arith. 189 (2019), no. 4, 347–365. MR 3962833, DOI 10.4064/aa170810-21-10
- Martin Westerholt-Raum, Products of vector valued Eisenstein series, Forum Math. 29 (2017), no. 1, 157–186. MR 3592597, DOI 10.1515/forum-2014-0198
Bibliographic Information
- Tobias Magnusson
- Affiliation: Chalmers tekniska högskola och Göteborgs Universitet, Institutionen för Matematiska vetenskaper, SE-412 96 Göteborg, Sweden
- ORCID: 0000-0001-8486-1833
- Email: tobmag@chalmers.se
- Martin Raum
- Affiliation: Chalmers tekniska högskola och Göteborgs Universitet, Institutionen för Matematiska vetenskaper, SE-412 96 Göteborg, Sweden
- MR Author ID: 921539
- ORCID: 0000-0002-3485-8596
- Email: martin@raum-brothers.eu
- Received by editor(s): February 14, 2022
- Received by editor(s) in revised form: March 6, 2023
- Published electronically: May 23, 2023
- Additional Notes: The second author was partially supported by Vetenskapsrådet Grant 2015-04139 and 2019-03551.
- © Copyright 2023 by the authors.
- Journal: Math. Comp. 92 (2023), 2861-2891
- MSC (2020): Primary 11F30; Secondary 11F11, 11F50
- DOI: https://doi.org/10.1090/mcom/3847