On the Diophantine equation $U_n - b^m = c$
HTML articles powered by AMS MathViewer
- by Sebastian Heintze, Robert F. Tichy, Ingrid Vukusic and Volker Ziegler;
- Math. Comp. 92 (2023), 2825-2859
- DOI: https://doi.org/10.1090/mcom/3854
- Published electronically: May 15, 2023
- HTML | PDF | Request permission
Abstract:
Let $(U_n)_{n\in \mathbb {N}}$ be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants $B$ and $N_0$ such that for any $b,c\in \mathbb {Z}$ with $b> B$ the equation $U_n - b^m = c$ has at most two distinct solutions $(n,m)\in \mathbb {N}^2$ with $n\geq N_0$ and $m\geq 1$. Moreover, we apply our result to the special case of Tribonacci numbers given by $T_1= T_2=1$, $T_3=2$ and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n\geq 4$. By means of the LLL-algorithm and continued fraction reduction we are able to prove $N_0=2$ and $B=e^{438}$. The corresponding reduction algorithm is implemented in Sage.References
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62. MR 1234835, DOI 10.1515/crll.1993.442.19
- Herbert Batte, Mahadi Ddamulira, Juma Kasozi, and Florian Luca, On the multiplicity in Pillai’s problem with Fibonacci numbers and powers of a fixed prime, Glas. Mat. Ser. III 57(77) (2022), no. 2, 185–201. MR 4541293, DOI 10.3336/gm.57.2.02
- Michael A. Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), no. 5, 897–922. MR 1859761, DOI 10.4153/CJM-2001-036-6
- Jhon J. Bravo, Maribel Díaz, and Carlos A. Gómez, Pillai’s problem with $k$-Fibonacci and Pell numbers, J. Difference Equ. Appl. 27 (2021), no. 10, 1434–1455. MR 4343279, DOI 10.1080/10236198.2021.1990900
- Jhon J. Bravo, Florian Luca, and Karina Yazán, On Pillai’s problem with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc. 54 (2017), no. 3, 1069–1080. MR 3659165, DOI 10.4134/BKMS.b160486
- Kwok Chi Chim, István Pink, and Volker Ziegler, On a variant of Pillai’s problem, Int. J. Number Theory 13 (2017), no. 7, 1711–1727. MR 3667491, DOI 10.1142/S1793042117500981
- Kwok Chi Chim, István Pink, and Volker Ziegler, On a variant of Pillai’s problem II, J. Number Theory 183 (2018), 269–290. MR 3715237, DOI 10.1016/j.jnt.2017.07.016
- Mahadi Ddamulira, On the problem of Pillai with Padovan numbers and powers of 3, Studia Sci. Math. Hungar. 56 (2019), no. 3, 364–379. MR 4020341, DOI 10.1556/012.2019.56.3.1435
- Mahadi Ddamulira, On the problem of Pillai with tribonacci numbers and powers of 3, J. Integer Seq. 22 (2019), no. 5, Art. 19.5.6, 14. MR 4008154
- Mahadi Ddamulira, On a problem of Pillai with Fibonacci numbers and powers of 3, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 263–277. MR 4110449, DOI 10.1007/s40590-019-00263-1
- Mahadi Ddamulira, Carlos A. Gómez, and Florian Luca, On a problem of Pillai with $k$-generalized Fibonacci numbers and powers of 2, Monatsh. Math. 187 (2018), no. 4, 635–664. MR 3861322, DOI 10.1007/s00605-018-1155-1
- Mahadi Ddamulira and Florian Luca, On the problem of Pillai with $k$-generalized Fibonacci numbers and powers of 3, Int. J. Number Theory 16 (2020), no. 7, 1643–1666. MR 4132045, DOI 10.1142/S1793042120500876
- Mahadi Ddamulira, Florian Luca, and Mihaja Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), no. 3, 411–421. MR 3660342, DOI 10.1007/s12044-017-0338-3
- Harold S. Erazo, Carlos A. Gómez, and Florian Luca, On Pillai’s problem with $X$-coordinates of Pell equations and powers of 2 II, Int. J. Number Theory 17 (2021), no. 10, 2251–2277. MR 4322833, DOI 10.1142/S1793042121500871
- Santos Hernández Hernández, Florian Luca, and Luis Manuel Rivera, On Pillai’s problem with the Fibonacci and Pell sequences, Bol. Soc. Mat. Mex. (3) 25 (2019), no. 3, 495–507. MR 4022301, DOI 10.1007/s40590-018-0223-9
- Mohand Ouamar Hernane, Florian Luca, Salah Eddine Rihane, and Alain Togbé, On Pillai’s problem with Pell numbers and powers of 2, Hardy-Ramanujan J. 41 (2018), 22–31. MR 3935493
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325–348. MR 2457264, DOI 10.4064/aa133-4-3
- Ana Cecilia García Lomelí, Santos Hernández Hernández, and Florian Luca, Pillai’s problem with the Fibonacci and Padovan sequences, Ann. Math. Inform. 50 (2019), 101–115. MR 4048808, DOI 10.33039/ami.2019.09.001
- Ana Cecilia García Lomelí and Santos Hernández Hernández, Pillai’s problem with Padovan numbers and powers of two, Rev. Colombiana Mat. 53 (2019), no. 1, 1–14 (English, with English and Spanish summaries). MR 3996173, DOI 10.15446/recolma.v53n1.81034
- Ana Cecilia García Lomelí, Santos Hernández Hernández, and Florian Luca, Pillai’s problem with the Padovan and tribonacci sequences, Indian J. Math. 61 (2019), no. 1, 61–75. MR 3931607
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252, DOI 10.1070/IM2000v064n06ABEH000314
- M. Mignotte and P. Voutier, A kit on linear forms in three logarithms, preprint, arXiv:2205.08899.
- S. S. Pillai, On $a^X-b^Y-b^y\pm a^x$, J. Indian Math. Soc. (N.S.) 8 (1944), 10–13. MR 11477
- S. S. Pillai, A correction to the paper “On $a^x-b^y=c$”, Indian Math. Soc. 2 (1937), 215.
- A. Schinzel, Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields, J. Reine Angew. Math. 268(269) (1974), 27–33. MR 344221, DOI 10.1515/crll.1974.268-269.27
- Nigel P. Smart, The algorithmic resolution of Diophantine equations, London Mathematical Society Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998. MR 1689189, DOI 10.1017/CBO9781107359994
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2), 2021.
- G. Wüstholz, A new approach to Baker’s theorem on linear forms in logarithms. III, New advances in transcendence theory (Durham, 1986) Cambridge Univ. Press, Cambridge, 1988, pp. 399–410. MR 972014
- Umberto Zannier, Lecture notes on Diophantine analysis, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 8, Edizioni della Normale, Pisa, 2009. With an appendix by Francesco Amoroso. MR 2517762
Bibliographic Information
- Sebastian Heintze
- Affiliation: Institute of Analysis and Number Theory, Graz University of Technology, Steyrergasse 30/II, A-8010 Graz, Austria
- MR Author ID: 1407704
- ORCID: 0000-0002-6356-1986
- Email: heintze@math.tugraz.at
- Robert F. Tichy
- Affiliation: Institute of Analysis and Number Theory, Graz University of Technology, Steyrergasse 30/II, A-8010 Graz, Austria
- MR Author ID: 172525
- Email: tichy@tugraz.at
- Ingrid Vukusic
- Affiliation: Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
- MR Author ID: 1428653
- Email: ingrid.vukusic@plus.ac.at
- Volker Ziegler
- Affiliation: Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
- MR Author ID: 744740
- ORCID: 0000-0002-6744-586X
- Email: volker.ziegler@plus.ac.at
- Received by editor(s): August 5, 2022
- Received by editor(s) in revised form: February 8, 2023, and March 23, 2023
- Published electronically: May 15, 2023
- Additional Notes: This work was supported by the Austrian Science Fund (FWF) under the project I4406.
- © Copyright 2023 American Mathematical Society
- Journal: Math. Comp. 92 (2023), 2825-2859
- MSC (2020): Primary 11Y50, 11D61, 11B37, 11J86
- DOI: https://doi.org/10.1090/mcom/3854
- MathSciNet review: 4628767